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Chapter 1

Definitions

Definition 1 (leadingTerm). Given a nonzero polynomial 𝑓 ∈ 𝑘[𝑥], let

𝑓 = 𝑐0𝑥𝑚 + 𝑐1𝑥𝑚−1 + ⋯ + 𝑐𝑚,

where 𝑐𝑖 ∈ 𝑘 and 𝑐0 ≠ 0 [thus, 𝑚 = deg(𝑓)]. Then we say that 𝑐0𝑥𝑚 is the leading term of 𝑓 ,
written

LT(𝑓) = 𝑐0𝑥𝑚.
Definition 2 (IsRemainder). Fix a monomial order > on ℤ𝑛

≥0, and let 𝐹 = (𝑓1, … , 𝑓𝑠) be an
ordered 𝑠-tuple of polynomials in 𝑘[𝑥1, … , 𝑥𝑛]. Then every 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] can be written as

𝑓 = 𝑎1𝑓1 + ⋯ + 𝑎𝑠𝑓𝑠 + 𝑟,

where 𝑎𝑖, 𝑟 ∈ 𝑘[𝑥1, … , 𝑥𝑛], and either 𝑟 = 0 or 𝑟 is a linear combination, with coefficients in 𝑘, of
monomials, none of which is divisible by any of LT(𝑓1), … , LT(𝑓𝑠). We will call 𝑟 a remainder
of 𝑓 on division by 𝐹 .

Definition 3 (IsGroebnerBasis). Fix a monomial order on the polynomial ring 𝑘[𝑥1, … , 𝑥𝑛].A
finite subset 𝐺 = {𝑔1, … , 𝑔𝑡} of an ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛], with 𝐼 ≠ {0}, is said to be a Gröbner
basis (or standard basis) if

⟨LT(𝑔1), … , LT(𝑔𝑡)⟩ = ⟨LT(𝐼)⟩.
Using the convention that ⟨∅⟩ = {0}, we define the empty set ∅ to be the Gröbner basis of the
zero ideal {0}.

Definition 4 (sPolynomial). The 𝑆-polynomial of 𝑓 and 𝑔 is the combination

𝑆(𝑓, 𝑔) = 𝑥𝛾

LT(𝑓) ⋅ 𝑓 − 𝑥𝛾

LT(𝑔) ⋅ 𝑔.

1



Chapter 2

Lemmas

Lemma 5 (finset_subset_preimage_of_finite_image). Let 𝑓 ∶ 𝛼 → 𝛽 be a function and
𝑠 ⊆ 𝛼 a subset with finite image 𝑓(𝑠). Then there exists a finite subset 𝑠′ ⊆fin 𝑠 such that:

• 𝑠′ ⊆ 𝑠 (subset relation)
• 𝑓(𝑠′) = 𝑓(𝑠) (image equality)
• |𝑠′| = |𝑓(𝑠)| (cardinality preservation)

Proof.

Lemma 6 (subset_finite_subset_subset_span).

Proof.

Theorem 7 (Submodule.fg_span_iff_fg_span_finset_subset).

Proof.

Lemma 8 (zero_le). a �Partially Ordered Set, a �0

Proof.

Lemma 9 (degree_mem_support_iff).

Proof.

Lemma 10 (IsRemainder_def’). Let 𝑝 ∈ 𝑅[X], 𝐺″ ⊆ 𝑅[X] be a set of polynomials, and
𝑟 ∈ 𝑅[X]. Then 𝑟 is a remainder of 𝑝 modulo 𝐺″ with respect to monomial order 𝑚 if and only
if there exists a finite linear combination from 𝐺″ such that:

1. The support of the combination is contained in 𝐺″

2. 𝑝 decomposes as the sum of this combination and 𝑟
3. For each 𝑔′ ∈ 𝐺″, the degree of 𝑔′ ⋅ (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑔′) is bounded by deg𝑚(𝑝)
4. No term of 𝑟 is divisible by any leading term of non-zero elements in 𝐺″

Proof.

Lemma 11 (IsRemainder_def’’). Let 𝑝, 𝑟 ∈ 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎], and let 𝐺′ ⊆ 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎] be a
finite set. We say that 𝑟 is a generalized remainder of 𝑝 upon division by 𝐺′ if the following two
conditions hold:
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1. For every nonzero 𝑔 ∈ 𝐺′ and every monomial 𝑥𝑠 ∈ supp(𝑟), there exists some component
𝑗 ∈ 𝜎 such that

multideg(𝑔)𝑗 > 𝑠𝑗.
2. There exists a function 𝑞 ∶ 𝐺′ → 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎] such that:

- For every $g \in G'$,
$$
\operatorname{multideg}''(q(g)g) \leq \operatorname{multideg}''(p);
$$

- The decomposition holds:
$$
p = \sum_{g \in G'} q(g)g + r.
$$

Proof.

Lemma 12 (lm_eq_zero_iff). Let 𝑝 ∈ 𝑅[X] be a multivariate polynomial. Then the leading
term of 𝑝 vanishes with respect to monomial order 𝑚 if and only if 𝑝 is the zero polynomial:

LT𝑚(𝑝) = 0 ⟺ 𝑝 = 0

Proof.

Lemma 13 (leadingTerm_image_sdiff_singleton_zero). For any set of polynomials 𝐺″ ⊆
𝑅[X] and monomial order 𝑚, the image of leading terms on the nonzero elements of 𝐺″ equals
the image on all elements minus zero:

LT𝑚(𝐺″ ∖ {0}) = LT𝑚(𝐺″) ∖ {0}

Proof.

Lemma 14 (leadingTerm_image_insert_zero).

Proof.

Lemma 15 (isRemainder_of_insert_zero_iff_isRemainder). Let 𝑝 ∈ 𝑅[X] be a polynomial,
𝐺″ ⊆ 𝑅[X] a set of polynomials, and 𝑟 ∈ 𝑅[X] a remainder. Then the remainder property is
invariant under inserting the zero polynomial:

IsRemainder𝑚 𝑝 (𝐺″ ∪ {0}) 𝑟 ⟺ IsRemainder𝑚 𝑝 𝐺″ 𝑟

Proof.

Lemma 16 (isRemainder_sdiff_singleton_zero_iff_isRemainder). Let 𝑝 ∈ 𝑅[X] be a poly-
nomial, 𝐺″ ⊆ 𝑅[X] a set of polynomials, and 𝑟 ∈ 𝑅[X] a remainder. Then the remainder property
is invariant under removal of the zero polynomial:

IsRemainder𝑚 𝑝 (𝐺″ ∖ {0}) 𝑟 ⟺ IsRemainder𝑚 𝑝 𝐺″ 𝑟

Proof.

Lemma 17 (sPolynomial_antisymm). the S-polynomial of 𝑓 and 𝑔 is antisymmetric:

Sph 𝑓𝑔 = − Sph 𝑔𝑓
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Proof.

Lemma 18 (sPolynomial_eq_zero_of_left_eq_zero). For any polynomial 𝑔 ∈ MvPolynomial 𝜎𝑅
and monomial order 𝑚, the S-polynomial with zero as first argument vanishes:

Sph 0𝑔 = 0

Proof.

Lemma 19 (sPolynomial_eq_zero_of_right_eq_zero’). For any polynomial 𝑔 ∈ MvPolynomial 𝜎𝑅
and monomial order 𝑚, the S-polynomial with zero as second argument vanishes:

Sph 𝑓0 = 0

Proof.

Theorem 20 (div_set’). Let 𝐺″ ⊆ 𝑅[X] be a set of polynomials where every nonzero element
has a unit leading coefficient:

∀𝑔 ∈ 𝐺″, (IsUnit(LC𝑚(𝑔)) ∨ 𝑔 = 0)

Then for any polynomial 𝑝 ∈ 𝑅[X], there exists a remainder 𝑟 satisfying:

IsRemainder𝑚 𝑝 𝐺″ 𝑟

where LC𝑚(𝑔) denotes the leading coefficient of 𝑔 under monomial order 𝑚.

Proof.

Theorem 21 (div_set’’). Let 𝑘 be a field, and let 𝐺″ ⊆ 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎] be a set of polynomials.
Then for any 𝑝 ∈ 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎], there exists a generalized remainder 𝑟 of 𝑝 upon division by 𝐺″.

Proof.

Lemma 22 (Ideal.fg_span_iff_fg_span_finset_subset). A subset 𝑠 ⊆ 𝑅 has finitely gen-
erated span if and only if: ∃ finite 𝑠′ ⊆ 𝑠 such that span(𝑠) = span(𝑠′)
Proof.

Lemma 23 (span_singleton_zero). For any ring 𝑅, the span of the zero singleton set equals
the zero submodule:

span𝑅{(0 ∶ 𝑅)} = ⊥
Proof.

Lemma 24 (span_insert_zero). For any subset 𝑠 ⊆ 𝑅 of a ring 𝑅, inserting zero does not
change the linear span:

span𝑅({0} ∪ 𝑠) = span𝑅(𝑠)
Proof.

Lemma 25 (span_sdiff_singleton_zero). For any subset 𝑠 ⊆ 𝑅 of a ring 𝑅, removing zero
does not change the linear span:

span𝑅(𝑠 ∖ {0}) = span𝑅(𝑠)
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Proof.

Lemma 26 (leadingTerm_ideal_span_monomial). Let 𝐺″ ⊆ 𝑅[𝑥1, … , 𝑥𝑛] be a set of polyno-
mials such that

∀𝑝 ∈ 𝐺″, leadingCoeff(𝑝) ∈ 𝑅×.
Then,

⟨lt(𝐺″)⟩ = ⟨𝑥deg(𝑝) ∣ 𝑝 ∈ 𝐺″⟩ ,
Proof.

Lemma 27 (leadingTerm_ideal_sdiff_singleton_zero).

Proof.

Lemma 28 (leadingTerm_ideal_insert_zero).

Proof.

Lemma 29 (IsGroebnerBasis_erase_zero).

Proof.

Lemma 30 (IsGroebnerBasis_union_singleton_zero).

Proof.

Lemma 31 (leadingTerm_ideal_span_monomial’).

⟨lt(𝐺)⟩ = ⟨{𝑥𝑡 ∶ 𝑡 ∈ {multideg(𝑝) ∶ 𝑝 ∈ 𝐺 ∖ {0}}}⟩

Proof.

Lemma 32 (mem_ideal_of_remainder_mem_ideal). Let 𝐺″ ⊆ 𝑅[𝑥1, … , 𝑥𝑛], let 𝐼 ⊆ 𝑅[𝑥1, … , 𝑥𝑛]
be an ideal, and let 𝑝, 𝑟 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Suppose that:

• 𝐺″ ⊆ 𝐼,
• 𝑟 ∈ 𝐼,
• 𝑟 is the remainder of 𝑝 upon division by 𝐺″.

Then,
𝑝 ∈ 𝐼.

Proof.

Lemma 33 (remainder_mem_ideal_iff). Let 𝑅 be a commutative ring, and let 𝐺″ ⊆ 𝑅[𝑥1, … , 𝑥𝑛],
𝐼 ⊆ 𝑅[𝑥1, … , 𝑥𝑛] be an ideal, and 𝑝, 𝑟 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Assume that:

• 𝐺″ ⊆ 𝐼,
• 𝑟 is the remainder of 𝑝 upon division by 𝐺″.

Then,
𝑟 ∈ 𝐼 ⟺ 𝑝 ∈ 𝐼.

Proof.
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Lemma 34 (remainder_sub_remainder_mem_ideal). Let 𝐼 ⊆ 𝑘[𝑥𝑖 ∶ 𝑖 ∈ 𝜎] be an ideal, and let
𝐺 ⊆ 𝐼 be a finite subset. Suppose that 𝑟1 and 𝑟2 are generalized remainders of a polynomial 𝑝
upon division by 𝐺. Then,

𝑟1 − 𝑟2 ∈ 𝐼.
Proof.

Lemma 35 (IsRemainder_term_not_mem_leading_term_ideal).

Proof.

Lemma 36 (IsRemainder_term_not_mem_leading_term_ideal’).

Proof.

Lemma 37 (IsRemainder_monomial_not_mem_leading_term_ideal).

Proof.

Lemma 38 (IsRemainder_monomial_not_mem_leading_term_ideal’).

Proof.

Theorem 39 (exists_groebner_basis). Let 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be an ideal. Then there exists a
finite subset 𝐺 = {𝑔1, … , 𝑔𝑡} of 𝐼 such that 𝐺 is a Gröbner basis for 𝐼.

Proof.

Theorem 40 (groebner_basis_isRemainder_zero_iff_mem_span). Let 𝐺 = {𝑔1, … , 𝑔𝑡} be a
Gröbner basis for an ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] and let 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛]. Then 𝑓 ∈ 𝐼 if and only if
the remainder on division of 𝑓 by 𝐺 is zero.

Proof.

Theorem 41 (groebner_basis_isRemainder_zero_iff_mem_span’).

Proof.

Theorem 42 (groebner_basis_zero_isRemainder_iff_mem_span).

Proof.

Lemma 43 (groebner_basis_zero_isRemainder_iff_mem_span’).

Proof.

Lemma 44 (remainder_zero).

Proof.

Theorem 45 (IsGroebnerBasis_iff). Let 𝐺 = {𝑔1, … , 𝑔𝑡} be a finite subset of 𝑘[𝑥1, … , 𝑥𝑛].
Then 𝐺 is a Gröbner basis for the ideal 𝐼 = ⟨𝐺⟩ if and only if for every 𝑓 ∈ 𝐼, the remainder of
𝑓 on division by 𝐺 is zero.

Proof.

Theorem 46 (span_groebner_basis). Let 𝐺 = {𝑔1, … , 𝑔𝑡} be a Gröbner basis for an ideal
𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛]. Then 𝐺 is a basis for the vector space 𝐼 over 𝑘.
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Proof.

Lemma 47 (sPolynomial_decomposition). Let 𝑓, ℎ1, … , ℎ𝑚 ∈ 𝑘[x] ∖ {0}, and suppose

𝑓 = 𝑐1ℎ1 + ⋯ + 𝑐𝑚ℎ𝑚, with 𝑐𝑖 ∈ 𝑘.

If
lm(ℎ1) = lm(ℎ2) = ⋯ = lm(ℎ𝑖) > lm(𝑓),

then
𝑓 = ∑

1≤𝑖<𝑗≤𝑚
𝑐𝑖,𝑗𝑆(ℎ𝑖, ℎ𝑗), 𝑐𝑖,𝑗 ∈ 𝑘.

Furthermore, if 𝑆(ℎ𝑖, ℎ𝑗) ≠ 0, then lm(ℎ𝑖) > lm(𝑆(ℎ𝑖, ℎ𝑗)).
Proof.

Lemma 48 (sPolynomial_degree_lt). ℎ1, ℎ2 ∈ 𝑘[x], 𝑙𝑚(ℎ1) = 𝑙𝑚(ℎ2), 𝑆(ℎ1, ℎ2) ≠ 0, then
𝑙𝑚(𝑆(ℎ1, ℎ2)) < 𝑙𝑚(ℎ1).
Proof.

Theorem 49 (buchberger_criterion). A basis 𝐺 = {𝑔1, … , 𝑔𝑡} for an ideal 𝐼 is a Gröbner
basis if and only if 𝑆(𝑔𝑖, 𝑔𝑗) →𝐺 0 for all 𝑖 ≠ 𝑗.

Proof.
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