Blueprint of Groebner Basis Theory in LEAN

Lihong Zhi's Team

May 9, 2025

Chapter 1 Definitions

Definition 1 (leadingTerm). Given a nonzero polynomial $f \in k[x]$, let

$$f = c_0 x^m + c_1 x^{m-1} + \dots + c_m,$$

where $c_i \in k$ and $c_0 \neq 0$ [thus, $m = \deg(f)$]. Then we say that $c_0 x^m$ is the **leading term** of f, written

$$\mathrm{LT}(f) = c_0 x^m.$$

Definition 2 (IsRemainder). Fix a monomial order > on $\mathbb{Z}_{\geq 0}^n$, and let $F = (f_1, \dots, f_s)$ be an ordered s-tuple of polynomials in $k[x_1, \dots, x_n]$. Then every $f \in k[x_1, \dots, x_n]$ can be written as

$$f = a_1 f_1 + \dots + a_s f_s + r,$$

where $a_i, r \in k[x_1, ..., x_n]$, and either r = 0 or r is a linear combination, with coefficients in k, of monomials, none of which is divisible by any of $LT(f_1), ..., LT(f_s)$. We will call r a **remainder** of f on division by F.

Definition 3 (IsGroebnerBasis). Fix a monomial order on the polynomial ring $k[x_1, ..., x_n]$. A finite subset $G = \{g_1, ..., g_t\}$ of an ideal $I \subseteq k[x_1, ..., x_n]$, with $I \neq \{0\}$, is said to be a **Gröbner basis** (or standard basis) if

$$\langle \operatorname{LT}(g_1), \dots, \operatorname{LT}(g_t) \rangle = \langle \operatorname{LT}(I) \rangle.$$

Using the convention that $\langle \emptyset \rangle = \{0\}$, we define the empty set \emptyset to be the Gröbner basis of the zero ideal $\{0\}$.

Definition 4 (sPolynomial). The S-polynomial of f and g is the combination

$$S(f,g) = \frac{x^{\gamma}}{\mathrm{LT}(f)} \cdot f - \frac{x^{\gamma}}{\mathrm{LT}(g)} \cdot g.$$

Chapter 2

Lemmas

Lemma 5 (finset_subset_preimage_of_finite_image). Let $f : \alpha \to \beta$ be a function and $s \subseteq \alpha$ a subset with finite image f(s). Then there exists a finite subset $s' \subseteq_{fin} s$ such that:

• $s' \subseteq s$ (subset relatio	n)
------------------------------------	----

- f(s') = f(s) (image equality)
- |s'| = |f(s)| (cardinality preservation)

Proof.

Lemma 6 (subset_finite_subset_subset_span).

Proof.	
Theorem 7 (Submodule.fg_span_iff_fg_span_finset_subset).	
Proof.	
Lemma 8 (zero_le). a Partially Ordered Set, a 0	
Proof.	

Lemma 9 (degree_mem_support_iff).

Proof.

Lemma 10 (IsRemainder_def'). Let $p \in R[\mathbf{X}]$, $G'' \subseteq R[\mathbf{X}]$ be a set of polynomials, and $r \in R[\mathbf{X}]$. Then r is a remainder of p modulo G'' with respect to monomial order m if and only if there exists a finite linear combination from G'' such that:

- 1. The support of the combination is contained in G''
- 2. p decomposes as the sum of this combination and r
- 3. For each $g' \in G''$, the degree of $g' \cdot (coefficient \ of \ g')$ is bounded by $\deg_m(p)$
- 4. No term of r is divisible by any leading term of non-zero elements in G''

Proof.

Lemma 11 (IsRemainder_def'). Let $p, r \in k[x_i : i \in \sigma]$, and let $G' \subseteq k[x_i : i \in \sigma]$ be a finite set. We say that r is a generalized remainder of p upon division by G' if the following two conditions hold:

1. For every nonzero $g \in G'$ and every monomial $x^s \in \operatorname{supp}(r)$, there exists some component $j \in \sigma$ such that $\operatorname{multideg}(q) > q$

$$\operatorname{munideg}(g)_j > s_j.$$

2. There exists a function $q: G' \to k[x_i: i \in \sigma]$ such that:

```
- For every $g \in G'$,
    $$
    \operatorname{multideg}''(q(g)g) \leq \operatorname{multideg}''(p);
    $$
- The decomposition holds:
    $$
    p = \sum_{g \in G'} q(g)g + r.
    $$
```

Proof.

Lemma 12 (lm_eq_zero_iff). Let $p \in R[\mathbf{X}]$ be a multivariate polynomial. Then the leading term of p vanishes with respect to monomial order m if and only if p is the zero polynomial:

$$LT_m(p) = 0 \iff p = 0$$

Proof.

Lemma 13 (leadingTerm_image_sdiff_singleton_zero). For any set of polynomials $G'' \subseteq R[\mathbf{X}]$ and monomial order m, the image of leading terms on the nonzero elements of G'' equals the image on all elements minus zero:

$$LT_m(G'' \setminus \{0\}) = LT_m(G'') \setminus \{0\}$$

Proof.

Lemma 14 (leadingTerm_image_insert_zero).

Proof.

Lemma 15 (isRemainder_of_insert_zero_iff_isRemainder). Let $p \in R[\mathbf{X}]$ be a polynomial, $G'' \subseteq R[\mathbf{X}]$ a set of polynomials, and $r \in R[\mathbf{X}]$ a remainder. Then the remainder property is invariant under inserting the zero polynomial:

$$\mathsf{IsRemainder}_m p\left(G'' \cup \{0\}\right) r \iff \mathsf{IsRemainder}_m p\left(G'' r\right)$$

Proof.

Lemma 16 (isRemainder_sdiff_singleton_zero_iff_isRemainder). Let $p \in R[\mathbf{X}]$ be a polynomial, $G'' \subseteq R[\mathbf{X}]$ a set of polynomials, and $r \in R[\mathbf{X}]$ a remainder. Then the remainder property is invariant under removal of the zero polynomial:

$$\mathsf{IsRemainder}_m p\left(G'' \setminus \{0\}\right) r \iff \mathsf{IsRemainder}_m p\left(G'' \land \{0\}\right) r$$

Proof.

Lemma 17 (sPolynomial_antisymm). the S-polynomial of f and g is antisymmetric:

$$\operatorname{Sph} fg = -\operatorname{Sph} gf$$

Lemma 18 (sPolynomial_eq_zero_of_left_eq_zero). For any polynomial $g \in MvPolynomial \sigma R$ and monomial order m, the S-polynomial with zero as first argument vanishes:

$$\operatorname{Sph} 0g = 0$$

Proof.

Proof.

Lemma 19 (sPolynomial_eq_zero_of_right_eq_zero'). For any polynomial $g \in MvPolynomial \sigma R$ and monomial order m, the S-polynomial with zero as second argument vanishes:

$$\operatorname{Sph} f0 = 0$$

Proof.

Theorem 20 (div_set'). Let $G'' \subseteq R[\mathbf{X}]$ be a set of polynomials where every nonzero element has a unit leading coefficient:

$$\forall g \in G'', ($$
IsUnit(LC_m(g)) $\lor g = 0)$

Then for any polynomial $p \in R[\mathbf{X}]$, there exists a remainder r satisfying:

$$\mathsf{IsRemainder}_m p \, G'' \, r$$

where $LC_m(g)$ denotes the leading coefficient of g under monomial order m.

Proof.

Theorem 21 (div_set''). Let k be a field, and let $G'' \subseteq k[x_i : i \in \sigma]$ be a set of polynomials. Then for any $p \in k[x_i : i \in \sigma]$, there exists a generalized remainder r of p upon division by G''.

Proof.

Lemma 22 (Ideal.fg_span_iff_fg_span_finset_subset). A subset $s \subseteq R$ has finitely generated span if and only if: \exists finite $s' \subseteq s$ such that span(s) = span(s')

Proof.

Lemma 23 (span_singleton_zero). For any ring R, the span of the zero singleton set equals the zero submodule:

$$\mathrm{span}_R\{(0:R)\} = \bot$$

Proof.

Lemma 24 (span_insert_zero). For any subset $s \subseteq R$ of a ring R, inserting zero does not change the linear span:

$$\operatorname{span}_R(\{0\}\cup s)=\operatorname{span}_R(s)$$

Proof.

Lemma 25 (span_sdiff_singleton_zero). For any subset $s \subseteq R$ of a ring R, removing zero does not change the linear span:

$$\operatorname{span}_R(s \setminus \{0\}) = \operatorname{span}_R(s)$$

Proof.

Lemma 26 (leadingTerm_ideal_span_monomial). Let $G'' \subseteq R[x_1, \dots, x_n]$ be a set of polynomials such that

$$\forall p \in G'', \text{ leadingCoeff}(p) \in R^{\times}.$$

Then,

 $\left< \mathrm{lt}(G'') \right> = \left< x^{\mathrm{deg}(p)} \mid p \in G'' \right>,$

Proof.

Lemma 27 (leadingTerm_ideal_sdiff_singleton_zero).

Proof.

Lemma 28 (leadingTerm_ideal_insert_zero).

Proof.

Lemma 29 (IsGroebnerBasis_erase_zero).

Proof.

Lemma 30 (IsGroebnerBasis_union_singleton_zero).

Proof.

Lemma 31 (leadingTerm_ideal_span_monomial').

$$\langle \operatorname{lt}(G) \rangle = \langle \{ x^t : t \in \{ \operatorname{multideg}(p) : p \in G \setminus \{0\} \} \} \rangle$$

Proof.

Lemma 32 (mem_ideal_of_remainder_mem_ideal). Let $G'' \subseteq R[x_1, \dots, x_n]$, let $I \subseteq R[x_1, \dots, x_n]$ be an ideal, and let $p, r \in R[x_1, \dots, x_n]$. Suppose that:

- $G'' \subseteq I$,
- $r \in I$,
- r is the remainder of p upon division by G''.

Then,

 $p \in I$.

Proof.

Lemma 33 (remainder_mem_ideal_iff). Let R be a commutative ring, and let $G'' \subseteq R[x_1, \ldots, x_n]$, $I \subseteq R[x_1, \ldots, x_n]$ be an ideal, and $p, r \in R[x_1, \ldots, x_n]$. Assume that:

- $G'' \subseteq I$,
- r is the remainder of p upon division by G''.

Then,

 $r \in I \quad \Longleftrightarrow \quad p \in I.$

Proof.

П

5

Lemma 34 (remainder_sub_remainder_mem_ideal). Let $I \subseteq k[x_i : i \in \sigma]$ be an ideal, and let $G \subseteq I$ be a finite subset. Suppose that r_1 and r_2 are generalized remainders of a polynomial p upon division by G. Then,

$$r_1 - r_2 \in I.$$

Proof.

$Lemma \ 35 \ (\texttt{IsRemainder_term_not_mem_leading_term_ideal}).$
Proof.
Lemma 36 (IsRemainder_term_not_mem_leading_term_ideal').
Proof.

Lemma 37 (IsRemainder_monomial_not_mem_leading_term_ideal).

Proof.

Lemma 38 (IsRemainder_monomial_not_mem_leading_term_ideal').

Proof.

Theorem 39 (exists_groebner_basis). Let $I \subseteq k[x_1, ..., x_n]$ be an ideal. Then there exists a finite subset $G = \{g_1, ..., g_t\}$ of I such that G is a Gröbner basis for I.

Proof.

Theorem 40 (groebner_basis_isRemainder_zero_iff_mem_span). Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis for an ideal $I \subseteq k[x_1, \ldots, x_n]$ and let $f \in k[x_1, \ldots, x_n]$. Then $f \in I$ if and only if the remainder on division of f by G is zero.

Proof.

Theorem 41 (groebner_basis_isRemainder_zero_iff_mem_span').

Proof.

Theorem 42 (groebner_basis_zero_isRemainder_iff_mem_span).

Proof.

Lemma 43 (groebner_basis_zero_isRemainder_iff_mem_span').

Proof.

Lemma 44 (remainder_zero).

Proof.

Theorem 45 (IsGroebnerBasis_iff). Let $G = \{g_1, \dots, g_t\}$ be a finite subset of $k[x_1, \dots, x_n]$. Then G is a Gröbner basis for the ideal $I = \langle G \rangle$ if and only if for every $f \in I$, the remainder of f on division by G is zero.

Proof.

Theorem 46 (span_groebner_basis). Let $G = \{g_1, \dots, g_t\}$ be a Gröbner basis for an ideal $I \subseteq k[x_1, \dots, x_n]$. Then G is a basis for the vector space I over k.

□ 1

Proof.

 $\textbf{Lemma 47 (sPolynomial_decomposition).} \ Let \ f, h_1, \dots, h_m \in k[\mathbf{x}] \smallsetminus \{0\}, \ and \ suppose$

$$f = c_1 h_1 + \dots + c_m h_m, \quad with \ c_i \in k.$$

 $I\!f$

$$\operatorname{lm}(h_1) = \operatorname{lm}(h_2) = \dots = \operatorname{lm}(h_i) > \operatorname{lm}(f),$$

then

$$f = \sum_{1 \leq i < j \leq m} c_{i,j} S(h_i,h_j), \quad c_{i,j} \in k.$$

 $\label{eq:Furthermore, if S(h_i,h_j) \neq 0, then \ \mathrm{lm}(h_i) > \mathrm{lm}(S(h_i,h_j)).$

Proof.

Lemma 48 (sPolynomial_degree_lt). $h_1, h_2 \in k[\mathbf{x}], lm(h_1) = lm(h_2), S(h_1, h_2) \neq 0$, then $lm(S(h_1, h_2)) < lm(h_1)$.

Proof.

Theorem 49 (buchberger_criterion). A basis $G = \{g_1, \dots, g_t\}$ for an ideal I is a Gröbner basis if and only if $S(g_i, g_j) \rightarrow_G 0$ for all $i \neq j$.

Proof.