theorem
MonomialOrder.isRemainder_range_fin
{σ : Type u_2}
{R : Type u_3}
[CommSemiring R]
{m : MonomialOrder σ}
(p : MvPolynomial σ R)
{ι : Type u_1}
[Fintype ι]
(b : ι → MvPolynomial σ R)
(r : MvPolynomial σ R)
:
m.IsRemainder p (Set.range b) r ↔ (∃ (g : ι → MvPolynomial σ R),
p = ∑ i : ι, b i * g i + r ∧ ∀ (i : ι), m.toWithBotSyn (m.withBotDegree (b i * g i)) ≤ m.toWithBotSyn (m.withBotDegree p)) ∧ ∀ c ∈ r.support, ∀ (i : ι), b i ≠ 0 → ¬m.degree (b i) ≤ c