Documentation

Groebner.AddEquiv

def AddEquiv.withBotCongr {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
Equations
Instances For
    def AddEquiv.withTopCongr {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
    Equations
    Instances For
      @[simp]
      theorem AddEquiv.withBotCongr_toEquiv_eq {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withTopCongr_toEquiv_eq {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withBotCongr_toAddHom_eq {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withTopCongr_toAddHom_eq {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withBotCongr_apply {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) (a : WithBot α) :
      @[simp]
      theorem AddEquiv.withTopCongr_apply {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) (a : WithTop α) :
      @[simp]
      theorem AddEquiv.withBotCongr_refl {α : Type u_1} [Add α] :
      @[simp]
      theorem AddEquiv.withTopCongr_refl {α : Type u_1} [Add α] :
      @[simp]
      theorem AddEquiv.withBotCongr_symm {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withTopCongr_symm {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
      @[simp]
      theorem AddEquiv.withBotCongr_trans {α : Type u_1} {β : Type u_3} {γ : Type u_2} [Add α] [Add β] [Add γ] (e₁ : α ≃+ β) (e₂ : β ≃+ γ) :
      @[simp]
      theorem AddEquiv.withTopCongr_trans {α : Type u_1} {β : Type u_3} {γ : Type u_2} [Add α] [Add β] [Add γ] (e₁ : α ≃+ β) (e₂ : β ≃+ γ) :