Documentation
Groebner
.
AddEquiv
Search
return to top
source
Imports
Init
Mathlib
Imported by
AddEquiv
.
withBotCongr
AddEquiv
.
withTopCongr
AddEquiv
.
withBotCongr_toEquiv_eq
AddEquiv
.
withTopCongr_toEquiv_eq
AddEquiv
.
withBotCongr_toAddHom_eq
AddEquiv
.
withTopCongr_toAddHom_eq
AddEquiv
.
withBotCongr_apply
AddEquiv
.
withTopCongr_apply
AddEquiv
.
withBotCongr_refl
AddEquiv
.
withTopCongr_refl
AddEquiv
.
withBotCongr_symm
AddEquiv
.
withTopCongr_symm
AddEquiv
.
withBotCongr_trans
AddEquiv
.
withTopCongr_trans
source
def
AddEquiv
.
withBotCongr
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
WithBot
α
≃+
WithBot
β
Equations
e
.
withBotCongr
=
{
toEquiv
:=
e
.
withBotCongr
,
map_add'
:=
⋯
}
Instances For
source
def
AddEquiv
.
withTopCongr
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
WithTop
α
≃+
WithTop
β
Equations
e
.
withTopCongr
=
{
toEquiv
:=
e
.
withTopCongr
,
map_add'
:=
⋯
}
Instances For
source
@[simp]
theorem
AddEquiv
.
withBotCongr_toEquiv_eq
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
withBotCongr
.
toEquiv
=
e
.
withBotCongr
source
@[simp]
theorem
AddEquiv
.
withTopCongr_toEquiv_eq
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
withTopCongr
.
toEquiv
=
e
.
withTopCongr
source
@[simp]
theorem
AddEquiv
.
withBotCongr_toAddHom_eq
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
withBotCongr
.
toAddHom
=
e
.
toAddHom
.
withBotMap
source
@[simp]
theorem
AddEquiv
.
withTopCongr_toAddHom_eq
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
withTopCongr
.
toAddHom
=
e
.
toAddHom
.
withBotMap
source
@[simp]
theorem
AddEquiv
.
withBotCongr_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
(
a
:
WithBot
α
)
:
e
.
withBotCongr
a
=
WithBot.map
(⇑
e
)
a
source
@[simp]
theorem
AddEquiv
.
withTopCongr_apply
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
(
a
:
WithTop
α
)
:
e
.
withTopCongr
a
=
WithTop.map
(⇑
e
)
a
source
@[simp]
theorem
AddEquiv
.
withBotCongr_refl
{
α
:
Type
u_1}
[
Add
α
]
:
(
refl
α
)
.
withBotCongr
=
refl
(
WithBot
α
)
source
@[simp]
theorem
AddEquiv
.
withTopCongr_refl
{
α
:
Type
u_1}
[
Add
α
]
:
(
refl
α
)
.
withTopCongr
=
refl
(
WithTop
α
)
source
@[simp]
theorem
AddEquiv
.
withBotCongr_symm
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
symm
.
withBotCongr
=
e
.
withBotCongr
.
symm
source
@[simp]
theorem
AddEquiv
.
withTopCongr_symm
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Add
α
]
[
Add
β
]
(
e
:
α
≃+
β
)
:
e
.
symm
.
withTopCongr
=
e
.
withTopCongr
.
symm
source
@[simp]
theorem
AddEquiv
.
withBotCongr_trans
{
α
:
Type
u_1}
{
β
:
Type
u_3}
{
γ
:
Type
u_2}
[
Add
α
]
[
Add
β
]
[
Add
γ
]
(
e₁
:
α
≃+
β
)
(
e₂
:
β
≃+
γ
)
:
(
e₁
.
trans
e₂
)
.
withBotCongr
=
e₁
.
withBotCongr
.
trans
e₂
.
withBotCongr
source
@[simp]
theorem
AddEquiv
.
withTopCongr_trans
{
α
:
Type
u_1}
{
β
:
Type
u_3}
{
γ
:
Type
u_2}
[
Add
α
]
[
Add
β
]
[
Add
γ
]
(
e₁
:
α
≃+
β
)
(
e₂
:
β
≃+
γ
)
:
(
e₁
.
trans
e₂
)
.
withTopCongr
=
e₁
.
withTopCongr
.
trans
e₂
.
withTopCongr