Documentation

Groebner.MonomialOrder

def MonomialOrder.withBotDegree {σ : Type u_1} (m : MonomialOrder σ) {R : Type u_2} [CommSemiring R] (f : MvPolynomial σ R) :

the degree of a multivariate polynomial with respect to a monomial ordering

Equations
Instances For

    Given a monomial order with bot, notation for the corresponding strict order relation on WithBot (σ →₀ ℕ)

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Given a monomial order with bot, notation for the corresponding order relation on WithBot (σ →₀ ℕ)

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MonomialOrder.withBotDegree_eq {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (f : MvPolynomial σ R) [Decidable (f = 0)] :
        m.withBotDegree f = if f = 0 then else (m.degree f)
        @[simp]
        theorem MonomialOrder.withBotDegree_eq_coe_degree_iff {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (f : MvPolynomial σ R) :
        m.withBotDegree f = (m.degree f) f 0
        @[simp]
        theorem MonomialOrder.withBotDegree_eq_bot_iff {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (f : MvPolynomial σ R) :
        @[simp]
        theorem MonomialOrder.withBotDegree_monomial {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (d : σ →₀ ) (c : R) [Decidable (c = 0)] :
        theorem MonomialOrder.withBotDegree_C {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (c : R) [Decidable (c = 0)] :
        @[simp]
        theorem MonomialOrder.withBotDegree_neg {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_3} [CommRing R] (f : MvPolynomial σ R) :
        @[simp]
        theorem MonomialOrder.withBotDegree_one {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] [Nontrivial R] :
        @[simp]
        theorem MonomialOrder.withBotDegree_mul {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] (f g : MvPolynomial σ R) [NoZeroDivisors R] :
        theorem and_iff_and_left_imp {a b : Prop} :
        a b a (ab)
        theorem MonomialOrder.withBotDegree_sum_le {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] {α : Type u_3} {s : Finset α} {f : αMvPolynomial σ R} :
        m.toWithBotSyn (m.withBotDegree (∑ xs, f x)) s.sup fun (x : α) => m.toWithBotSyn (m.withBotDegree (f x))
        theorem MonomialOrder.le_withBotDegree {σ : Type u_1} {m : MonomialOrder σ} {R : Type u_2} [CommSemiring R] {f : MvPolynomial σ R} {d : σ →₀ } (hd : d f.support) :