theorem
Set.finset_subset_preimage_of_finite_image
{α : Type u_1}
{β : Type u_2}
{s : Set α}
{f : α → β}
(h : (f '' s).Finite)
:
Let $f: \alpha \to \beta$ be a function and $s \subseteq \alpha$ a subset with finite image $f(s)$. Then there exists a finite subset $s' \subseteq_{\text{fin}} s$ such that:
- $s' \subseteq s$ (subset relation)
- $f(s') = f(s)$ (image equality)
- $|s'| = |f(s)|$ (cardinality preservation)