Documentation

Groebner.Submodule

theorem Submodule.fg_span_iff_fg_span_finset_subset (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) :
(span R s).FG ∃ (s' : Finset M), s' s span R s = span R s'
theorem Submodule.mem_of_mem_of_le (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {x : M} {s t : Submodule R M} (hx : x s) (h : s t) :
x t
theorem Submodule.mem_span_of_mem (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {x : M} {s : Set M} (hx : x s) :
x span R s