Documentation

Init.Data.Bool

@[reducible, inline]
abbrev Bool.xor :
BoolBoolBool

Boolean “exclusive or”. xor x y can be written x ^^ y.

x ^^ y is true when precisely one of x or y is true. Unlike and and or, it does not have short-circuiting behavior, because one argument's value never determines the final value. Also unlike and and or, there is no commonly-used corresponding propositional connective.

Examples:

  • false ^^ false = false
  • true ^^ false = true
  • false ^^ true = true
  • true ^^ true = false

Conventions for notations in identifiers:

  • The recommended spelling of ^^ in identifiers is xor.
Equations
Instances For

    Boolean “exclusive or”. xor x y can be written x ^^ y.

    x ^^ y is true when precisely one of x or y is true. Unlike and and or, it does not have short-circuiting behavior, because one argument's value never determines the final value. Also unlike and and or, there is no commonly-used corresponding propositional connective.

    Examples:

    • false ^^ false = false
    • true ^^ false = true
    • false ^^ true = true
    • true ^^ true = false

    Conventions for notations in identifiers:

    • The recommended spelling of ^^ in identifiers is xor.
    Equations
    Instances For
      instance Bool.instDecidableForallOfDecidablePred (p : BoolProp) [inst : DecidablePred p] :
      Decidable (∀ (x : Bool), p x)
      Equations
      Equations
      instance Bool.instLE :
      Equations
      instance Bool.instLT :
      Equations
      Equations
      Equations
      theorem Bool.eq_iff_iff {a b : Bool} :
      a = b (a = true b = true)
      @[simp]
      theorem Bool.decide_eq_true {b : Bool} [Decidable (b = true)] :
      decide (b = true) = b
      @[simp]
      @[simp]
      theorem Bool.eq_false_imp_eq_true_iff (a b : Bool) :
      (a = falseb = true b = falsea = true) = True
      @[simp]
      theorem Bool.eq_true_imp_eq_false_iff (a b : Bool) :
      (a = trueb = false b = truea = false) = True

      and #

      @[simp]
      theorem Bool.and_self_left (a b : Bool) :
      (a && (a && b)) = (a && b)
      @[simp]
      theorem Bool.and_self_right (a b : Bool) :
      (a && b && b) = (a && b)
      @[simp]
      theorem Bool.not_and_self (x : Bool) :
      (!x && x) = false
      @[simp]
      theorem Bool.and_not_self (x : Bool) :
      (x && !x) = false
      theorem Bool.and_comm (x y : Bool) :
      (x && y) = (y && x)
      instance Bool.instCommutativeAnd :
      Std.Commutative fun (x1 x2 : Bool) => x1 && x2
      theorem Bool.and_left_comm (x y z : Bool) :
      (x && (y && z)) = (y && (x && z))
      theorem Bool.and_right_comm (x y z : Bool) :
      (x && y && z) = (x && z && y)
      @[simp]
      theorem Bool.and_eq_left_iff_imp {a b : Bool} :
      (a && b) = a a = trueb = true
      @[simp]
      theorem Bool.and_eq_right_iff_imp {a b : Bool} :
      (a && b) = b b = truea = true
      @[simp]
      theorem Bool.eq_self_and {a b : Bool} :
      a = (a && b) a = trueb = true
      @[simp]
      theorem Bool.eq_and_self {a b : Bool} :
      b = (a && b) b = truea = true
      @[reducible, inline, deprecated Bool.and_eq_left_iff_imp (since := "2025-04-04")]
      abbrev Bool.and_iff_left_iff_imp {a b : Bool} :
      (a && b) = a a = trueb = true
      Equations
      Instances For
        @[reducible, inline, deprecated Bool.and_eq_right_iff_imp (since := "2025-04-04")]
        abbrev Bool.and_iff_right_iff_imp {a b : Bool} :
        (a && b) = b b = truea = true
        Equations
        Instances For
          @[reducible, inline, deprecated Bool.eq_self_and (since := "2025-04-04")]
          abbrev Bool.iff_self_and {a b : Bool} :
          a = (a && b) a = trueb = true
          Equations
          Instances For
            @[reducible, inline, deprecated Bool.eq_and_self (since := "2025-04-04")]
            abbrev Bool.iff_and_self {a b : Bool} :
            b = (a && b) b = truea = true
            Equations
            Instances For
              @[simp]
              theorem Bool.not_and_eq_left_iff_and {a b : Bool} :
              (!a && b) = a (!a) = true (!b) = true
              @[simp]
              theorem Bool.and_not_eq_right_iff_and {a b : Bool} :
              (a && !b) = b (!a) = true (!b) = true
              @[simp]
              theorem Bool.eq_not_self_and {a b : Bool} :
              a = (!a && b) (!a) = true (!b) = true
              @[simp]
              theorem Bool.eq_and_not_self {a b : Bool} :
              b = (a && !b) (!a) = true (!b) = true
              @[reducible, inline, deprecated Bool.not_and_eq_left_iff_and (since := "2025-04-04")]
              abbrev Bool.not_and_iff_left_iff_imp {a b : Bool} :
              (!a && b) = a (!a) = true (!b) = true
              Equations
              Instances For
                @[reducible, inline, deprecated Bool.and_not_eq_right_iff_and (since := "2025-04-04")]
                abbrev Bool.and_not_iff_right_iff_imp {a b : Bool} :
                (a && !b) = b (!a) = true (!b) = true
                Equations
                Instances For
                  @[reducible, inline, deprecated Bool.eq_not_self_and (since := "2025-04-04")]
                  abbrev Bool.iff_not_self_and {a b : Bool} :
                  a = (!a && b) (!a) = true (!b) = true
                  Equations
                  Instances For
                    @[reducible, inline, deprecated Bool.eq_and_not_self (since := "2025-04-04")]
                    abbrev Bool.iff_and_not_self {a b : Bool} :
                    b = (a && !b) (!a) = true (!b) = true
                    Equations
                    Instances For

                      or #

                      @[simp]
                      theorem Bool.or_self_left (a b : Bool) :
                      (a || (a || b)) = (a || b)
                      @[simp]
                      theorem Bool.or_self_right (a b : Bool) :
                      (a || b || b) = (a || b)
                      @[simp]
                      theorem Bool.not_or_self (x : Bool) :
                      (!x || x) = true
                      @[simp]
                      theorem Bool.or_not_self (x : Bool) :
                      (x || !x) = true
                      @[simp]
                      theorem Bool.or_eq_left_iff_imp {a b : Bool} :
                      (a || b) = a b = truea = true
                      @[simp]
                      theorem Bool.or_eq_right_iff_imp {a b : Bool} :
                      (a || b) = b a = trueb = true
                      @[simp]
                      theorem Bool.eq_self_or {a b : Bool} :
                      a = (a || b) b = truea = true
                      @[simp]
                      theorem Bool.eq_or_self {a b : Bool} :
                      b = (a || b) a = trueb = true
                      @[reducible, inline, deprecated Bool.or_eq_left_iff_imp (since := "2025-04-04")]
                      abbrev Bool.or_iff_left_iff_imp {a b : Bool} :
                      (a || b) = a b = truea = true
                      Equations
                      Instances For
                        @[reducible, inline, deprecated Bool.or_eq_right_iff_imp (since := "2025-04-04")]
                        abbrev Bool.or_iff_right_iff_imp {a b : Bool} :
                        (a || b) = b a = trueb = true
                        Equations
                        Instances For
                          @[reducible, inline, deprecated Bool.eq_self_or (since := "2025-04-04")]
                          abbrev Bool.iff_self_or {a b : Bool} :
                          a = (a || b) b = truea = true
                          Equations
                          Instances For
                            @[reducible, inline, deprecated Bool.eq_or_self (since := "2025-04-04")]
                            abbrev Bool.iff_or_self {a b : Bool} :
                            b = (a || b) a = trueb = true
                            Equations
                            Instances For
                              @[simp]
                              theorem Bool.not_or_eq_left_iff_and {a b : Bool} :
                              (!a || b) = a a = true b = true
                              @[simp]
                              theorem Bool.or_not_eq_right_iff_and {a b : Bool} :
                              (a || !b) = b a = true b = true
                              @[simp]
                              theorem Bool.eq_not_self_or {a b : Bool} :
                              a = (!a || b) a = true b = true
                              @[simp]
                              theorem Bool.eq_or_not_self {a b : Bool} :
                              b = (a || !b) a = true b = true
                              @[reducible, inline, deprecated Bool.not_or_eq_left_iff_and (since := "2025-04-04")]
                              abbrev Bool.not_or_iff_left_iff_imp {a b : Bool} :
                              (!a || b) = a a = true b = true
                              Equations
                              Instances For
                                @[reducible, inline, deprecated Bool.or_not_eq_right_iff_and (since := "2025-04-04")]
                                abbrev Bool.or_not_iff_right_iff_imp {a b : Bool} :
                                (a || !b) = b a = true b = true
                                Equations
                                Instances For
                                  @[reducible, inline, deprecated Bool.eq_not_self_or (since := "2025-04-04")]
                                  abbrev Bool.iff_not_self_or {a b : Bool} :
                                  a = (!a || b) a = true b = true
                                  Equations
                                  Instances For
                                    @[reducible, inline, deprecated Bool.eq_or_not_self (since := "2025-04-04")]
                                    abbrev Bool.iff_or_not_self {a b : Bool} :
                                    b = (a || !b) a = true b = true
                                    Equations
                                    Instances For
                                      theorem Bool.or_comm (x y : Bool) :
                                      (x || y) = (y || x)
                                      instance Bool.instCommutativeOr :
                                      Std.Commutative fun (x1 x2 : Bool) => x1 || x2
                                      theorem Bool.or_left_comm (x y z : Bool) :
                                      (x || (y || z)) = (y || (x || z))
                                      theorem Bool.or_right_comm (x y z : Bool) :
                                      (x || y || z) = (x || z || y)

                                      distributivity #

                                      theorem Bool.and_or_distrib_left (x y z : Bool) :
                                      (x && (y || z)) = (x && y || x && z)
                                      theorem Bool.and_or_distrib_right (x y z : Bool) :
                                      ((x || y) && z) = (x && z || y && z)
                                      theorem Bool.or_and_distrib_left (x y z : Bool) :
                                      (x || y && z) = ((x || y) && (x || z))
                                      theorem Bool.or_and_distrib_right (x y z : Bool) :
                                      (x && y || z) = ((x || z) && (y || z))
                                      theorem Bool.and_xor_distrib_left (x y z : Bool) :
                                      (x && (y ^^ z)) = (x && y ^^ x && z)
                                      theorem Bool.and_xor_distrib_right (x y z : Bool) :
                                      ((x ^^ y) && z) = (x && z ^^ y && z)
                                      @[simp]
                                      theorem Bool.not_and (x y : Bool) :
                                      (!(x && y)) = (!x || !y)

                                      De Morgan's law for boolean and

                                      @[simp]
                                      theorem Bool.not_or (x y : Bool) :
                                      (!(x || y)) = (!x && !y)

                                      De Morgan's law for boolean or

                                      theorem Bool.and_eq_true_iff {x y : Bool} :
                                      (x && y) = true x = true y = true
                                      @[simp]
                                      theorem Bool.and_eq_false_imp {x y : Bool} :
                                      (x && y) = false x = truey = false
                                      theorem Bool.or_eq_true_iff {x y : Bool} :
                                      (x || y) = true x = true y = true
                                      @[simp]
                                      theorem Bool.or_eq_false_iff {x y : Bool} :
                                      (x || y) = false x = false y = false

                                      eq/beq/bne #

                                      @[simp]

                                      These two rules follow trivially by simp, but are needed to avoid non-termination in false_eq and true_eq.

                                      @[simp]
                                      theorem Bool.false_eq (b : Bool) :
                                      (false = b) = (b = false)
                                      @[simp]
                                      theorem Bool.true_eq (b : Bool) :
                                      (true = b) = (b = true)
                                      @[simp]
                                      theorem Bool.true_beq (b : Bool) :
                                      (true == b) = b
                                      @[simp]
                                      theorem Bool.false_beq (b : Bool) :
                                      (false == b) = !b
                                      @[simp]
                                      theorem Bool.true_bne (b : Bool) :
                                      (true != b) = !b
                                      @[simp]
                                      theorem Bool.false_bne (b : Bool) :
                                      (false != b) = b
                                      @[simp]
                                      theorem Bool.bne_true (b : Bool) :
                                      (b != true) = !b
                                      @[simp]
                                      theorem Bool.bne_false (b : Bool) :
                                      (b != false) = b
                                      @[simp]
                                      theorem Bool.not_beq_self (x : Bool) :
                                      ((!x) == x) = false
                                      @[simp]
                                      theorem Bool.beq_not_self (x : Bool) :
                                      (x == !x) = false
                                      @[simp]
                                      theorem Bool.not_bne (a b : Bool) :
                                      ((!a) != b) = !a != b
                                      @[simp]
                                      theorem Bool.bne_not (a b : Bool) :
                                      (a != !b) = !a != b
                                      theorem Bool.not_bne_self (x : Bool) :
                                      ((!x) != x) = true
                                      theorem Bool.bne_not_self (x : Bool) :
                                      (x != !x) = true
                                      theorem Bool.not_eq_self (b : Bool) :
                                      (!b) = b False
                                      @[simp]
                                      theorem Bool.eq_not_self (b : Bool) :
                                      @[simp]
                                      theorem Bool.beq_self_left (a b : Bool) :
                                      (a == (a == b)) = b
                                      @[simp]
                                      theorem Bool.beq_self_right (a b : Bool) :
                                      ((a == b) == b) = a
                                      @[simp]
                                      theorem Bool.bne_self_left (a b : Bool) :
                                      (a != (a != b)) = b
                                      @[simp]
                                      theorem Bool.bne_self_right (a b : Bool) :
                                      ((a != b) != b) = a
                                      theorem Bool.not_bne_not (x y : Bool) :
                                      ((!x) != !y) = (x != y)
                                      @[simp]
                                      theorem Bool.bne_assoc (x y z : Bool) :
                                      ((x != y) != z) = (x != (y != z))
                                      instance Bool.instAssociativeBne :
                                      Std.Associative fun (x1 x2 : Bool) => x1 != x2
                                      @[simp]
                                      theorem Bool.bne_right_inj {x y z : Bool} :
                                      (x != y) = (x != z) y = z
                                      @[simp]
                                      theorem Bool.bne_left_inj {x y z : Bool} :
                                      (x != z) = (y != z) x = y
                                      theorem Bool.eq_not_of_ne {x y : Bool} :
                                      x yx = !y
                                      theorem Bool.beq_eq_decide_eq {α : Type u_1} [BEq α] [LawfulBEq α] [DecidableEq α] (a b : α) :
                                      (a == b) = decide (a = b)
                                      theorem Bool.eq_not {a b : Bool} :
                                      a = !b a b
                                      theorem Bool.not_eq {a b : Bool} :
                                      (!a) = b a b
                                      @[simp]
                                      theorem Bool.coe_iff_coe {a b : Bool} :
                                      (a = true b = true) a = b
                                      @[simp]
                                      theorem Bool.coe_true_iff_false {a b : Bool} :
                                      (a = true b = false) a = !b
                                      @[simp]
                                      theorem Bool.coe_false_iff_true {a b : Bool} :
                                      (a = false b = true) (!a) = b
                                      @[simp]
                                      theorem Bool.coe_false_iff_false {a b : Bool} :
                                      (a = false b = false) (!a) = !b

                                      beq properties #

                                      theorem Bool.beq_comm {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} :
                                      (a == b) = (b == a)

                                      xor #

                                      theorem Bool.false_xor (x : Bool) :
                                      (false ^^ x) = x
                                      theorem Bool.xor_false (x : Bool) :
                                      (x ^^ false) = x
                                      theorem Bool.true_xor (x : Bool) :
                                      (true ^^ x) = !x
                                      theorem Bool.xor_true (x : Bool) :
                                      (x ^^ true) = !x
                                      theorem Bool.not_xor_self (x : Bool) :
                                      (!x ^^ x) = true
                                      theorem Bool.xor_not_self (x : Bool) :
                                      (x ^^ !x) = true
                                      theorem Bool.not_xor (x y : Bool) :
                                      (!x ^^ y) = !(x ^^ y)
                                      theorem Bool.xor_not (x y : Bool) :
                                      (x ^^ !y) = !(x ^^ y)
                                      theorem Bool.not_xor_not (x y : Bool) :
                                      (!x ^^ !y) = (x ^^ y)
                                      theorem Bool.xor_self (x : Bool) :
                                      (x ^^ x) = false
                                      theorem Bool.xor_comm (x y : Bool) :
                                      (x ^^ y) = (y ^^ x)
                                      theorem Bool.xor_left_comm (x y z : Bool) :
                                      (x ^^ (y ^^ z)) = (y ^^ (x ^^ z))
                                      theorem Bool.xor_right_comm (x y z : Bool) :
                                      (x ^^ y ^^ z) = (x ^^ z ^^ y)
                                      theorem Bool.xor_assoc (x y z : Bool) :
                                      (x ^^ y ^^ z) = (x ^^ (y ^^ z))
                                      theorem Bool.xor_right_inj {x y z : Bool} :
                                      (x ^^ y) = (x ^^ z) y = z
                                      theorem Bool.xor_left_inj {x y z : Bool} :
                                      (x ^^ z) = (y ^^ z) x = y

                                      le/lt #

                                      @[simp]
                                      theorem Bool.le_true (x : Bool) :
                                      @[simp]
                                      theorem Bool.false_le (x : Bool) :
                                      @[simp]
                                      theorem Bool.le_refl (x : Bool) :
                                      x x
                                      @[simp]
                                      theorem Bool.lt_irrefl (x : Bool) :
                                      ¬x < x
                                      theorem Bool.le_trans {x y z : Bool} :
                                      x yy zx z
                                      theorem Bool.le_antisymm {x y : Bool} :
                                      x yy xx = y
                                      theorem Bool.le_total (x y : Bool) :
                                      x y y x
                                      theorem Bool.lt_asymm {x y : Bool} :
                                      x < y¬y < x
                                      theorem Bool.lt_trans {x y z : Bool} :
                                      x < yy < zx < z
                                      theorem Bool.lt_iff_le_not_le {x y : Bool} :
                                      x < y x y ¬y x
                                      theorem Bool.lt_of_le_of_lt {x y z : Bool} :
                                      x yy < zx < z
                                      theorem Bool.lt_of_lt_of_le {x y z : Bool} :
                                      x < yy zx < z
                                      theorem Bool.le_of_lt {x y : Bool} :
                                      x < yx y
                                      theorem Bool.le_of_eq {x y : Bool} :
                                      x = yx y
                                      theorem Bool.ne_of_lt {x y : Bool} :
                                      x < yx y
                                      theorem Bool.lt_of_le_of_ne {x y : Bool} :
                                      x yx yx < y
                                      theorem Bool.le_of_lt_or_eq {x y : Bool} :
                                      x < y x = yx y

                                      min/max #

                                      @[simp]
                                      @[simp]

                                      injectivity lemmas #

                                      theorem Bool.not_inj {x y : Bool} :
                                      (!x) = !yx = y
                                      theorem Bool.not_inj_iff {x y : Bool} :
                                      (!x) = !y x = y
                                      theorem Bool.and_or_inj_right {m x y : Bool} :
                                      (x && m) = (y && m) → (x || m) = (y || m) → x = y
                                      theorem Bool.and_or_inj_right_iff {m x y : Bool} :
                                      (x && m) = (y && m) (x || m) = (y || m) x = y
                                      theorem Bool.and_or_inj_left {m x y : Bool} :
                                      (m && x) = (m && y) → (m || x) = (m || y) → x = y
                                      theorem Bool.and_or_inj_left_iff {m x y : Bool} :
                                      (m && x) = (m && y) (m || x) = (m || y) x = y

                                      toNat #

                                      def Bool.toNat (b : Bool) :

                                      Converts true to 1 and false to 0.

                                      Equations
                                      Instances For
                                        @[simp]
                                        @[simp]
                                        theorem Bool.toNat_le (c : Bool) :
                                        theorem Bool.toNat_lt (b : Bool) :
                                        b.toNat < 2
                                        @[simp]
                                        theorem Bool.toNat_eq_zero {b : Bool} :
                                        b.toNat = 0 b = false
                                        @[simp]
                                        theorem Bool.toNat_eq_one {b : Bool} :
                                        b.toNat = 1 b = true

                                        toInt #

                                        def Bool.toInt (b : Bool) :

                                        Converts true to 1 and false to 0.

                                        Equations
                                        Instances For
                                          @[simp]
                                          @[simp]

                                          ite #

                                          @[simp]
                                          theorem Bool.if_true_left (p : Prop) [h : Decidable p] (f : Bool) :
                                          (if p then true else f) = (decide p || f)
                                          @[simp]
                                          theorem Bool.if_false_left (p : Prop) [h : Decidable p] (f : Bool) :
                                          (if p then false else f) = (!decide p && f)
                                          @[simp]
                                          theorem Bool.if_true_right (p : Prop) [h : Decidable p] (t : Bool) :
                                          (if p then t else true) = (!decide p || t)
                                          @[simp]
                                          theorem Bool.if_false_right (p : Prop) [h : Decidable p] (t : Bool) :
                                          (if p then t else false) = (decide p && t)
                                          @[simp]
                                          theorem Bool.ite_eq_true_distrib (p : Prop) [h : Decidable p] (t f : Bool) :
                                          ((if p then t else f) = true) = if p then t = true else f = true
                                          @[simp]
                                          theorem Bool.ite_eq_false_distrib (p : Prop) [h : Decidable p] (t f : Bool) :
                                          ((if p then t else f) = false) = if p then t = false else f = false
                                          @[simp]
                                          theorem Bool.ite_eq_false {b : Bool} {p q : Prop} :
                                          (if b = false then p else q) if b = true then q else p
                                          @[simp]
                                          theorem Bool.ite_eq_true_else_eq_false {b : Bool} {q : Prop} :
                                          (if b = true then q else b = false) b = trueq
                                          @[simp]
                                          theorem Bool.not_ite_eq_true_eq_true {p : Prop} [h : Decidable p] {b c : Bool} :
                                          @[simp]
                                          theorem Bool.not_ite_eq_false_eq_false {p : Prop} [h : Decidable p] {b c : Bool} :
                                          @[simp]
                                          theorem Bool.not_ite_eq_true_eq_false {p : Prop} [h : Decidable p] {b c : Bool} :
                                          @[simp]
                                          theorem Bool.not_ite_eq_false_eq_true {p : Prop} [h : Decidable p] {b c : Bool} :

                                          forall #

                                          theorem Bool.forall_bool' {p : BoolProp} (b : Bool) :
                                          (∀ (x : Bool), p x) p b p !b
                                          @[simp]
                                          theorem Bool.forall_bool {p : BoolProp} :
                                          (∀ (b : Bool), p b) p false p true

                                          exists #

                                          theorem Bool.exists_bool' {p : BoolProp} (b : Bool) :
                                          ( (x : Bool), p x) p b p !b
                                          @[simp]
                                          theorem Bool.exists_bool {p : BoolProp} :
                                          ( (b : Bool), p b) p false p true

                                          cond #

                                          theorem Bool.cond_eq_ite {α : Sort u_1} (b : Bool) (t e : α) :
                                          (bif b then t else e) = if b = true then t else e
                                          theorem Bool.cond_eq_if {b : Bool} {α✝ : Sort u_1} {x y : α✝} :
                                          (bif b then x else y) = if b = true then x else y
                                          @[simp]
                                          theorem Bool.cond_not {α : Sort u_1} (b : Bool) (t e : α) :
                                          (bif !b then t else e) = bif b then e else t
                                          @[simp]
                                          theorem Bool.cond_self {α : Sort u_1} (c : Bool) (t : α) :
                                          (bif c then t else t) = t
                                          @[simp]
                                          theorem Bool.cond_prop {b : Bool} {p q : Prop} :
                                          (bif b then p else q) if b = true then p else q

                                          If the return values are propositions, there is no harm in simplifying a bif to an if.

                                          theorem Bool.cond_decide {α : Sort u_1} (p : Prop) [Decidable p] (t e : α) :
                                          (bif decide p then t else e) = if p then t else e
                                          @[simp]
                                          theorem Bool.cond_eq_ite_iff {α : Sort u_1} {a : Bool} {p : Prop} [h : Decidable p] {x y u v : α} :
                                          ((bif a then x else y) = if p then u else v) (if a = true then x else y) = if p then u else v
                                          @[simp]
                                          theorem Bool.ite_eq_cond_iff {α : Sort u_1} {p : Prop} {a : Bool} [h : Decidable p] {x y u v : α} :
                                          ((if p then x else y) = bif a then u else v) (if p then x else y) = if a = true then u else v
                                          @[simp]
                                          theorem Bool.cond_eq_true_distrib (c t f : Bool) :
                                          ((bif c then t else f) = true) = if c = true then t = true else f = true
                                          @[simp]
                                          theorem Bool.cond_eq_false_distrib (c t f : Bool) :
                                          ((bif c then t else f) = false) = if c = true then t = false else f = false
                                          theorem Bool.cond_true {α : Sort u} {a b : α} :
                                          (bif true then a else b) = a
                                          theorem Bool.cond_false {α : Sort u} {a b : α} :
                                          (bif false then a else b) = b
                                          @[simp]
                                          theorem Bool.cond_true_left (c f : Bool) :
                                          (bif c then true else f) = (c || f)
                                          @[simp]
                                          theorem Bool.cond_false_left (c f : Bool) :
                                          (bif c then false else f) = (!c && f)
                                          @[simp]
                                          theorem Bool.cond_true_right (c t : Bool) :
                                          (bif c then t else true) = (!c || t)
                                          @[simp]
                                          theorem Bool.cond_false_right (c t : Bool) :
                                          (bif c then t else false) = (c && t)
                                          @[simp]
                                          theorem Bool.cond_then_not_self (c b : Bool) :
                                          (bif c then !c else b) = (!c && b)
                                          @[simp]
                                          theorem Bool.cond_else_not_self (c b : Bool) :
                                          (bif c then b else !c) = (!c || b)
                                          @[simp]
                                          theorem Bool.cond_then_self (c b : Bool) :
                                          (bif c then c else b) = (c || b)
                                          @[simp]
                                          theorem Bool.cond_else_self (c b : Bool) :
                                          (bif c then b else c) = (c && b)
                                          @[reducible, inline, deprecated Bool.cond_then_not_self (since := "2025-04-04")]
                                          abbrev Bool.cond_true_not_same (c b : Bool) :
                                          (bif c then !c else b) = (!c && b)
                                          Equations
                                          Instances For
                                            @[reducible, inline, deprecated Bool.cond_else_not_self (since := "2025-04-04")]
                                            abbrev Bool.cond_false_not_same (c b : Bool) :
                                            (bif c then b else !c) = (!c || b)
                                            Equations
                                            Instances For
                                              @[reducible, inline, deprecated Bool.cond_then_self (since := "2025-04-04")]
                                              abbrev Bool.cond_true_same (c b : Bool) :
                                              (bif c then c else b) = (c || b)
                                              Equations
                                              Instances For
                                                @[reducible, inline, deprecated Bool.cond_else_self (since := "2025-04-04")]
                                                abbrev Bool.cond_false_same (c b : Bool) :
                                                (bif c then b else c) = (c && b)
                                                Equations
                                                Instances For
                                                  theorem Bool.cond_pos {α : Sort u_1} {b : Bool} {a a' : α} (h : b = true) :
                                                  (bif b then a else a') = a
                                                  theorem Bool.cond_neg {α : Sort u_1} {b : Bool} {a a' : α} (h : b = false) :
                                                  (bif b then a else a') = a'
                                                  theorem Bool.apply_cond {α : Sort u_1} {β : Sort u_2} (f : αβ) {b : Bool} {a a' : α} :
                                                  f (bif b then a else a') = bif b then f a else f a'

                                                  decidability #

                                                  theorem Bool.decide_coe (b : Bool) [Decidable (b = true)] :
                                                  decide (b = true) = b
                                                  @[simp]
                                                  theorem Bool.decide_and (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
                                                  decide (p q) = (decide p && decide q)
                                                  @[simp]
                                                  theorem Bool.decide_or (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
                                                  decide (p q) = (decide p || decide q)
                                                  @[simp]
                                                  theorem Bool.decide_iff_dist (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
                                                  decide (p q) = (decide p == decide q)
                                                  theorem Bool.and_eq_decide (p q : Bool) :
                                                  (p && q) = decide (p = true q = true)
                                                  theorem Bool.or_eq_decide (p q : Bool) :
                                                  (p || q) = decide (p = true q = true)
                                                  theorem Bool.decide_beq_decide (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
                                                  (decide p == decide q) = decide (p q)

                                                  decide #

                                                  @[simp]
                                                  theorem false_eq_decide_iff {p : Prop} [h : Decidable p] :
                                                  @[simp]
                                                  theorem true_eq_decide_iff {p : Prop} [h : Decidable p] :

                                                  coercions #

                                                  def boolPredToPred {α : Sort u_1} :
                                                  Coe (αBool) (αProp)

                                                  This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

                                                  Equations
                                                  Instances For
                                                    def boolRelToRel {α : Sort u_1} :
                                                    Coe (ααBool) (ααProp)

                                                    This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

                                                    Equations
                                                    Instances For

                                                      subtypes #

                                                      @[simp]
                                                      theorem Subtype.beq_iff {α : Type u} [BEq α] {p : αProp} {x y : { a : α // p a }} :
                                                      (x == y) = (x.val == y.val)