Arithmetic-geometric sequences #
An arithmetic-geometric sequence is a sequence defined by the recurrence relation
u (n + 1) = a * u n + b.
Main definitions #
arithGeom a b u₀: arithmetic-geometric sequence with starting valueu₀and recurrence relationu (n + 1) = a * u n + b.
Main statements #
arithGeom_eq: fora ≠ 1,arithGeom a b u₀ n = a ^ n * (u₀ - (b / (1 - a))) + b / (1 - a)tendsto_arithGeom_atTop_of_one_lt: if1 < aandb / (1 - a) < u₀, thenarithGeom a b u₀ ntends to+∞asntends to+∞.tendsto_arithGeom_nhds_of_lt_one: if0 ≤ a < 1, thenarithGeom a b u₀ ntends tob / (1 - a)asntends to+∞.arithGeom_strictMono: if1 < aandb / (1 - a) < u₀, thenarithGeom a b u₀is strictly monotone.
theorem
arithGeom_strictMono
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
(ha : 1 < a)
(h0 : b / (1 - a) < u₀)
:
StrictMono (arithGeom a b u₀)
theorem
tendsto_arithGeom_atTop_of_one_lt
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[Archimedean R]
(ha : 1 < a)
(h0 : b / (1 - a) < u₀)
:
Filter.Tendsto (arithGeom a b u₀) Filter.atTop Filter.atTop
theorem
tendsto_arithGeom_nhds_of_lt_one
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[Archimedean R]
[TopologicalSpace R]
[OrderTopology R]
(ha_pos : 0 ≤ a)
(ha : a < 1)
:
Filter.Tendsto (arithGeom a b u₀) Filter.atTop (nhds (b / (1 - a)))