Basic properties of Azumaya algebras #
In this file we prove basic facts about Azumaya algebras such as R is an Azumaya algebra
over itself where R is a commutative ring.
Main Results #
- IsAzumaya.id:- Ris an Azumaya algebra over itself.
- IsAzumaya.ofAlgEquiv: If- Ais an Azumaya algebra over- Rand- Ais isomorphic to- Bas an- R-algebra, then- Bis an Azumaya algebra over- R.
Tags #
Noncommutative algebra, Azumaya algebra, Brauer Group
theorem
IsAzumaya.AlgHom.mulLeftRight_bij
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Ring A]
[Algebra R A]
[h : IsAzumaya R A]
 :
@[reducible, inline]
The "canonical" isomorphism between R ⊗ Rᵒᵖ and End R R which is equal
to AlgHom.mulLeftRight R R.
Equations
Instances For
theorem
IsAzumaya.mulLeftRight_comp_congr
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[CommSemiring R]
[Ring A]
[Ring B]
[Algebra R A]
[Algebra R B]
(e : A ≃ₐ[R] B)
 :
(AlgHom.mulLeftRight R B).comp ↑(Algebra.TensorProduct.congr e (AlgEquiv.op e)) =   (↑(LinearEquiv.algConj R e.toLinearEquiv)).comp (AlgHom.mulLeftRight R A)
The following diagram commutes:
          e ⊗ eᵒᵖ
A ⊗ Aᵐᵒᵖ  ------------> B ⊗ Bᵐᵒᵖ
  |                        |
  |                        |
  | mulLeftRight R A       | mulLeftRight R B
  |                        |
  V                        V
End R A   ------------> End R B
          e.conj