Documentation

Mathlib.Algebra.BigOperators.Group.Finset.Gaps

Sum of gaps #

This file proves that given a function g on [a, b], g b - g a can be split according to a given finite collection of pairwise disjoint closed subintervals of [a, b]. It is the sum of two terms:

We use Finset.intervalGapsWithin to encode the complement.

We provide the multiplication versions in Finset.prod_intervalGapsWithin_mul_prod_eq_div, Finset.prod_intervalGapsWithin_eq_div_div_prod, and the additive versions in Finset.sum_intervalGapsWithin_add_sum_eq_sub, Finset.sum_intervalGapsWithin_eq_sub_sub_sum.

Technically, we don't require pairwise disjointness or endpoints to be within [a, b] or even require that a ≤ b, but it makes the most sense if they are actually satisfied.

theorem Finset.prod_intervalGapsWithin_mul_prod_eq_div {α : Type u_1} {β : Type u_2} [LinearOrder α] [CommGroup β] (F : Finset (α × α)) {k : } (h : F.card = k) {a b : α} (g : αβ) :
(∏ irange (k + 1), g (F.intervalGapsWithin h a b i).2 / g (F.intervalGapsWithin h a b i).1) * zF, g z.2 / g z.1 = g b / g a
theorem Finset.sum_intervalGapsWithin_add_sum_eq_sub {α : Type u_1} {β : Type u_2} [LinearOrder α] [AddCommGroup β] (F : Finset (α × α)) {k : } (h : F.card = k) {a b : α} (g : αβ) :
irange (k + 1), (g (F.intervalGapsWithin h a b i).2 - g (F.intervalGapsWithin h a b i).1) + zF, (g z.2 - g z.1) = g b - g a
theorem Finset.prod_intervalGapsWithin_eq_div_div_prod {α : Type u_1} {β : Type u_2} [LinearOrder α] [CommGroup β] (F : Finset (α × α)) {k : } (h : F.card = k) {a b : α} (g : αβ) :
irange (k + 1), g (F.intervalGapsWithin h a b i).2 / g (F.intervalGapsWithin h a b i).1 = g b / g a / zF, g z.2 / g z.1
theorem Finset.sum_intervalGapsWithin_eq_sub_sub_sum {α : Type u_1} {β : Type u_2} [LinearOrder α] [AddCommGroup β] (F : Finset (α × α)) {k : } (h : F.card = k) {a b : α} (g : αβ) :
irange (k + 1), (g (F.intervalGapsWithin h a b i).2 - g (F.intervalGapsWithin h a b i).1) = g b - g a - zF, (g z.2 - g z.1)