Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.PushforwardContinuous

Pushforward of sheaves of modules #

Assume that categories C and D are equipped with Grothendieck topologies, and that F : C ⥤ D is a continuous functor. Then, if φ : S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R is a morphism of sheaves of rings, we construct the pushforward functor pushforward φ : SheafOfModules.{v} R ⥤ SheafOfModules.{v} S, and we show that they interact with the composition of morphisms similarly as pseudofunctors.

The pushforward of sheaves of modules that is induced by a continuous functor F and a morphism of sheaves of rings φ : S ⟶ (F.sheafPushforwardContinuous RingCat J K).obj R.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    Given M : SheafOfModules R and X : D, this is the restriction of M over the sheaf of rings R.over X on the category Over X.

    Equations
    Instances For

      The pushforward functor by the identity morphism identifies to the identify functor of the category of sheaves of modules.

      Equations
      Instances For

        Pushforwards along equal morphisms of sheaves of rings are isomorphic.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem SheafOfModules.pushforward_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {D' : Type u₃} [CategoryTheory.Category.{v₃, u₃} D'] {D'' : Type u₄} [CategoryTheory.Category.{v₄, u₄} D''] {J : CategoryTheory.GrothendieckTopology C} {K : CategoryTheory.GrothendieckTopology D} {F : CategoryTheory.Functor C D} {S : CategoryTheory.Sheaf J RingCat} {R : CategoryTheory.Sheaf K RingCat} [F.IsContinuous J K] [F.IsContinuous J K] (φ : S (F.sheafPushforwardContinuous RingCat J K).obj R) {K' : CategoryTheory.GrothendieckTopology D'} {K'' : CategoryTheory.GrothendieckTopology D''} {G : CategoryTheory.Functor D D'} {R' : CategoryTheory.Sheaf K' RingCat} [G.IsContinuous K K'] [G.IsContinuous K K'] [(F.comp G).IsContinuous J K'] [(F.comp G).IsContinuous J K'] (ψ : R (G.sheafPushforwardContinuous RingCat K K').obj R') {G' : CategoryTheory.Functor D' D''} {R'' : CategoryTheory.Sheaf K'' RingCat} [G'.IsContinuous K' K''] [G'.IsContinuous K' K''] [(G.comp G').IsContinuous K K''] [(G.comp G').IsContinuous K K''] [((F.comp G).comp G').IsContinuous J K''] [((F.comp G).comp G').IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] [(F.comp (G.comp G')).IsContinuous J K''] (ψ' : R' (G'.sheafPushforwardContinuous RingCat K' K'').obj R'') :

          A natural transformation gives a natural transformation between the pushforward functors.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            A natural isomorphism gives a natural isomorphism between the pushforward functors.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For