Documentation

Mathlib.Algebra.Module.LocalizedModule.Submodule

Localization of Submodules #

Results about localizations of submodules and quotient modules are provided in this file.

Main results #

TODO #

def Submodule.localized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

Let N be a localization of an R-module M at p. This is the localization of an R-submodule of M viewed as an R-submodule of N.

Equations
Instances For
    def Submodule.localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

    Let S be the localization of R at p and N be a localization of M at p. This is the localization of an R-submodule of M viewed as an S-submodule of N.

    Equations
    Instances For
      theorem Submodule.mem_localized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
      x localized₀ p f M' mM', ∃ (s : p), IsLocalizedModule.mk' f m s = x
      theorem Submodule.mem_localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
      x localized' S p f M' mM', ∃ (s : p), IsLocalizedModule.mk' f m s = x
      theorem Submodule.restrictScalars_localized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

      localized₀ is the same as localized' considered as a submodule over the base ring.

      theorem Submodule.localized'_eq_span {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
      localized' S p f M' = span S (f '' M')
      theorem Submodule.map_le_localized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
      map f M' localized₀ p f M'
      def Submodule.localized'gi {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
      GaloisInsertion (localized' S p f) fun (x : Submodule S N) => comap f (restrictScalars R x)

      The Galois insertion between Submodule R M and Submodule S N, where S is the localization of R at p and N is the localization of M at p.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]
        noncomputable abbrev Submodule.localized {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

        The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.

        Equations
        Instances For
          @[simp]
          theorem Submodule.localized₀_bot {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] :
          @[simp]
          theorem Submodule.localized'_bot {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
          @[simp]
          theorem Submodule.localized₀_top {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] :
          @[simp]
          theorem Submodule.localized'_top {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
          theorem Submodule.localized₀_inf {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' M'' : Submodule R M) :
          localized₀ p f (M'M'') = localized₀ p f M'localized₀ p f M''
          theorem Submodule.localized'_inf {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' M'' : Submodule R M) :
          localized' S p f (M'M'') = localized' S p f M'localized' S p f M''
          theorem Submodule.localized'_iSup {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {ι : Type u_5} (g : ιSubmodule R M) :
          localized' S p f (⨆ (i : ι), g i) = ⨆ (i : ι), localized' S p f (g i)
          theorem Submodule.localized₀_iSup {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {ι : Type u_5} (g : ιSubmodule R M) :
          localized₀ p f (⨆ (i : ι), g i) = ⨆ (i : ι), localized₀ p f (g i)
          noncomputable def Submodule.localized₀FrameHom {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] :

          localized₀ as a FrameHom.

          Equations
          Instances For
            @[simp]
            theorem Submodule.IsLocalizedModule.localized₀FrameHom_apply {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
            noncomputable def Submodule.localized'FrameHom {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :

            localized' as a FrameHom.

            Equations
            Instances For
              @[simp]
              theorem Submodule.IsLocalizedModule.localized'FrameHom_apply {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
              (localized'FrameHom S p f) M' = localized' S p f M'
              @[simp]
              theorem Submodule.localized'_span {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (s : Set M) :
              localized' S p f (span R s) = span S (f '' s)
              theorem Submodule.localized₀_smul {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (I : Submodule R R) :
              localized₀ p f (I M') = I localized₀ p f M'
              theorem Submodule.restrictScalars_localized'_smul {R : Type u_1} (S : Type u_2) {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid N] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (I : Submodule R R) (N' : Submodule S N) :
              theorem Submodule.localized'_smul {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (I : Submodule R R) :
              localized' S p f (I M') = localized' S p (Algebra.linearMap R S) I localized' S p f M'
              def Submodule.toLocalized₀ {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
              M' →ₗ[R] (localized₀ p f M')

              The localization map of a submodule.

              Equations
              Instances For
                @[simp]
                theorem Submodule.toLocalized₀_apply_coe {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
                ((toLocalized₀ p f M') c) = f c
                def Submodule.toLocalized' {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                M' →ₗ[R] (localized' S p f M')

                The localization map of a submodule.

                Equations
                Instances For
                  @[simp]
                  theorem Submodule.toLocalized'_apply_coe {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
                  ((toLocalized' S p f M') c) = f c
                  @[reducible, inline]
                  noncomputable abbrev Submodule.toLocalized {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :
                  M' →ₗ[R] (localized p M')

                  The localization map of a submodule.

                  Equations
                  Instances For
                    instance Submodule.isLocalizedModule {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                    noncomputable def Submodule.localizedEquiv {R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                    The canonical isomorphism between the localization of a submodule and its realization as a submodule in the localized module.

                    Equations
                    Instances For
                      theorem Submodule.localized₀_le_localized₀_of_smul_le {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P Q : Submodule R M} (x : p) (h : x P Q) :
                      theorem Submodule.localized'_le_localized'_of_smul_le {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P Q : Submodule R M} (x : p) (h : x P Q) :
                      localized' S p f P localized' S p f Q
                      def Submodule.toLocalizedQuotient' {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                      M M' →ₗ[R] N localized' S p f M'

                      The localization map of a quotient module.

                      Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev Submodule.toLocalizedQuotient {R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                        The localization map of a quotient module.

                        Equations
                        Instances For
                          @[simp]
                          theorem Submodule.toLocalizedQuotient'_mk {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : M) :
                          instance IsLocalizedModule.toLocalizedQuotient' {R : Type u_5} (S : Type u_6) {M : Type u_7} {N : Type u_8} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
                          noncomputable def localizedQuotientEquiv {R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

                          The canonical isomorphism between the localization of a quotient module and its realization as a quotient of the localized module.

                          Equations
                          Instances For
                            theorem LinearMap.ker_localizedMap_eq_localized₀_ker {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                            theorem LinearMap.localized'_ker_eq_ker_localizedMap {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                            theorem LinearMap.ker_localizedMap_eq_localized'_ker {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                            noncomputable def LinearMap.toKerIsLocalized {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                            g.ker →ₗ[R] ((IsLocalizedModule.map p f f') g).ker

                            The canonical map from the kernel of g to the kernel of g localized at a submonoid.

                            This is a localization map by LinearMap.toKerLocalized_isLocalizedModule.

                            Equations
                            Instances For
                              @[simp]
                              theorem LinearMap.toKerIsLocalized_apply_coe {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) (c : g.ker) :
                              ((toKerIsLocalized p f f' g) c) = f c
                              theorem LinearMap.toKerLocalized_isLocalizedModule {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

                              The canonical map to the kernel of the localization of g is localizing. In other words, localization commutes with kernels.

                              theorem LinearMap.range_localizedMap_eq_localized₀_range {R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
                              theorem LinearMap.localized'_range_eq_range_localizedMap {R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

                              Localization commutes with ranges.