Lie admissible rings and algebras #
We define a Lie-admissible ring as a nonunital nonassociative ring such that the associator satisfies the identity
associator x y z + associator z x y + associator y z x =
associator y x z + associator z y x + associator x z y
Main definitions: #
Main results #
LieAdmissibleRing.instLieRing: a Lie-admissible ring as a Lie ringLeftPreLieRing.instLieAdmissibleRing: a left pre-Lie ring as a Lie admissible ringRightPreLieRing.instLieAdmissibleRing: a right pre-Lie ring as a Lie admissible ringLieAdmissibleAlgebra.instLieAlgebra: a Lie-admissible algebra as a Lie algebraLeftPreLieAlgebra.instLieAdmissibleAlgebra: a left pre-Lie ring as a Lie admissible algebraRightPreLieAlgebra.instLieAdmissibleAlgebra: a right pre-Lie ring as a Lie admissible algebra
Implementation Notes #
Algebras are implemented as extending Module, IsScalarTower and SMulCommClass following the
documentation of Algebra.
References #
[Munthe-Kaas, H.Z., Lundervold, A. On Post-Lie Algebras, Lie–Butcher Series and Moving Frames.][munthe-kaas_lundervold_2013]
A LieAdmissibleRing is a NonUnitalNonAssocRing such that the canonical bracket
⁅x, y⁆ := x * y - y * x turns it into a LieRing. This is expressed by an associator identity.
- add : L → L → L
- zero : L
- neg : L → L
- sub : L → L → L
- mul : L → L → L
- assoc_def (x y z : L) : associator x y z + associator z x y + associator y z x = associator y x z + associator z y x + associator x z y
Instances
A LieAdmissibleAlgebra is a LieAdmissibleRing equipped with a compatible action by scalars
from a commutative ring.
- smul : R → L → L
Instances
By definition, every LieAdmissibleRing yields a LieRing with the commutator bracket.
Equations
- LieAdmissibleRing.instLieRing = { toAddCommGroup := inst✝.toAddCommGroup, toBracket := Ring.instBracket, add_lie := ⋯, lie_add := ⋯, lie_self := ⋯, leibniz_lie := ⋯ }
Every LieAdmissibleAlgebra is a LieAlgebra with the commutator bracket.
Equations
- LieAdmissibleAlgebra.instLieAlgebra = { toModule := inst✝.toModule, lie_smul := ⋯ }
LeftPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on the
associator.
Equations
- LeftPreLieRing.instLieAdmissibleRing = { toNonUnitalNonAssocRing := inst✝.toNonUnitalNonAssocRing, assoc_def := ⋯ }
Equations
- LeftPreLieAlgebra.instLieAdmissibleAlgebra = { toModule := inst✝.toModule, toIsScalarTower := ⋯, toSMulCommClass := ⋯ }
RightPreLieRings are examples of LieAdmissibleRings by the commutatitvity assumption on
the associator.
Equations
- RightPreLieRing.instLieAdmissibleRing = { toNonUnitalNonAssocRing := inst✝.toNonUnitalNonAssocRing, assoc_def := ⋯ }
Equations
- RightPreLieAlgebra.instLieAdmissibleAlgebra = { toModule := inst✝.toModule, toIsScalarTower := ⋯, toSMulCommClass := ⋯ }