Covariant instances on WithZero #
Adding a zero to a type with a preorder and multiplication which satisfies some axiom, gives us a new type which satisfies some variant of the axiom.
Example #
If α satisfies b₁ < b₂ → a * b₁ < a * b₂ for all a,
then WithZero α satisfies b₁ < b₂ → a * b₁ < a * b₂ for all a > 0,
which is PosMulStrictMono (WithZero α).
Application #
The type ℤᵐ⁰ := WithZero (Multiplicative ℤ) is used a lot in mathlib's valuation
theory. These instances enable lemmas such as mul_pos to fire on ℤᵐ⁰.
instance
instPosMulStrictMonoWithZeroOfMulLeftStrictMono
{α : Type u_1}
[Mul α]
[Preorder α]
[MulLeftStrictMono α]
:
instance
instMulPosStrictMonoWithZeroOfMulRightStrictMono
{α : Type u_1}
[Mul α]
[Preorder α]
[MulRightStrictMono α]
:
instance
instPosMulMonoWithZeroOfMulLeftMono
{α : Type u_1}
[Mul α]
[Preorder α]
[MulLeftMono α]
:
PosMulMono (WithZero α)
instance
instMulPosMonoWithZeroOfMulRightMono
{α : Type u_1}
[Mul α]
[Preorder α]
[MulRightMono α]
:
MulPosMono (WithZero α)
Given any linearly ordered commutative group with zero α, this is the order isomorphism
between WithZero αˣ with α.
Equations
- OrderIso.withZeroUnits = { toEquiv := WithZero.withZeroUnitsEquiv.toEquiv, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.withZeroUnits_symm_apply
{α : Type u_1}
[LinearOrderedCommGroupWithZero α]
(a : α)
:
@[simp]
theorem
OrderIso.withZeroUnits_apply
{α : Type u_1}
[LinearOrderedCommGroupWithZero α]
(n : WithZero αˣ)
:
theorem
WithZero.withZeroUnitsEquiv_symm_strictMono
{α : Type u_1}
[LinearOrderedCommGroupWithZero α]
: