Documentation

Mathlib.Algebra.Order.Monoid.Canonical.Basic

Extra lemmas about canonically ordered monoids #

@[simp]
theorem Finset.sup_eq_zero {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [LinearOrder α] [OrderBot α] [CanonicallyOrderedAdd α] {s : Finset ι} {f : ια} :
s.sup f = 0 is, f i = 0
@[simp]
theorem Finset.sup'_eq_zero {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [LinearOrder α] [OrderBot α] [CanonicallyOrderedAdd α] {s : Finset ι} {f : ια} (hs : s.Nonempty) :
s.sup' hs f = 0 is, f i = 0
theorem Set.range_add_eq_image_Ici {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [Sub α] [OrderedSub α] {β : Type u_2} {f : αβ} {k : α} :
(range fun (x : α) => f (x + k)) = f '' Ici k
theorem lt_add_iff_lt_left_or_exists_lt {α : Type u_1} [LinearOrder α] {a b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
a < b + c a < b d < c, a = b + d
theorem forall_lt_add_iff_lt_left {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
(∀ a < b + c, P a) (∀ a < b, P a) d < c, P (b + d)
theorem exists_lt_add_iff_lt_left {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
(∃ a < b + c, P a) (∃ a < b, P a) d < c, P (b + d)
theorem le_add_iff_lt_left_or_exists_le {α : Type u_1} [LinearOrder α] {a b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
a b + c a < b dc, a = b + d
theorem forall_le_add_iff_le_left {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
(∀ ab + c, P a) (∀ a < b, P a) dc, P (b + d)
theorem exists_le_add_iff_le_left {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [Add α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
(∃ ab + c, P a) (∃ a < b, P a) dc, P (b + d)
theorem lt_add_iff_lt_right_or_exists_lt {α : Type u_1} [LinearOrder α] {a b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
a < b + c a < c d < b, a = d + c
theorem forall_lt_add_iff_lt_right {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
(∀ a < b + c, P a) (∀ a < c, P a) d < b, P (d + c)
theorem exists_lt_add_iff_lt_right {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftReflectLT α] [IsLeftCancelAdd α] :
(∃ a < b + c, P a) (∃ a < c, P a) d < b, P (d + c)
theorem le_add_iff_lt_right_or_exists_le {α : Type u_1} [LinearOrder α] {a b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
a b + c a < c db, a = d + c
theorem forall_le_add_iff_le_right {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
(∀ ab + c, P a) (∀ a < c, P a) db, P (d + c)
theorem exists_le_add_iff_le_right {α : Type u_1} [LinearOrder α] {P : αProp} {b c : α} [AddCommMagma α] [CanonicallyOrderedAdd α] [AddLeftMono α] [IsLeftCancelAdd α] :
(∃ ab + c, P a) (∃ a < c, P a) db, P (d + c)