Extra lemmas about canonically ordered monoids #
@[simp]
theorem
Finset.sup_eq_zero
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[LinearOrder α]
[OrderBot α]
[CanonicallyOrderedAdd α]
{s : Finset ι}
{f : ι → α}
:
@[simp]
theorem
Finset.sup'_eq_zero
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[LinearOrder α]
[OrderBot α]
[CanonicallyOrderedAdd α]
{s : Finset ι}
{f : ι → α}
(hs : s.Nonempty)
:
theorem
Set.range_add_eq_image_Ici
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
{β : Type u_2}
{f : α → β}
{k : α}
:
theorem
lt_add_iff_lt_left_or_exists_lt
{α : Type u_1}
[LinearOrder α]
{a b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
forall_lt_add_iff_lt_left
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
exists_lt_add_iff_lt_left
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
le_add_iff_lt_left_or_exists_le
{α : Type u_1}
[LinearOrder α]
{a b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
:
theorem
forall_le_add_iff_le_left
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
:
theorem
exists_le_add_iff_le_left
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[Add α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
:
theorem
lt_add_iff_lt_right_or_exists_lt
{α : Type u_1}
[LinearOrder α]
{a b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
forall_lt_add_iff_lt_right
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
exists_lt_add_iff_lt_right
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftReflectLT α]
[IsLeftCancelAdd α]
:
theorem
le_add_iff_lt_right_or_exists_le
{α : Type u_1}
[LinearOrder α]
{a b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
:
theorem
forall_le_add_iff_le_right
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
:
theorem
exists_le_add_iff_le_right
{α : Type u_1}
[LinearOrder α]
{P : α → Prop}
{b c : α}
[AddCommMagma α]
[CanonicallyOrderedAdd α]
[AddLeftMono α]
[IsLeftCancelAdd α]
: