Pointwise actions on sets in a ring #
This file proves properties of pointwise actions on sets in a ring.
Tags #
set multiplication, set addition, pointwise addition, pointwise multiplication, pointwise subtraction
theorem
Finset.zero_mem_smul_finset_iff
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[IsDomain R]
[AddCommMonoid M]
[DecidableEq M]
[Module R M]
[Module.IsTorsionFree R M]
{t : Finset M}
{r : R}
(hr : r ≠ 0)
:
@[simp]
theorem
Finset.neg_smul_finset
{R : Type u_1}
{G : Type u_2}
[Ring R]
[AddCommGroup G]
[Module R G]
[DecidableEq G]
{t : Finset G}
{a : R}
:
@[simp]
theorem
Finset.neg_smul
{R : Type u_1}
{G : Type u_2}
[Ring R]
[AddCommGroup G]
[Module R G]
[DecidableEq G]
{s : Finset R}
{t : Finset G}
[DecidableEq R]
: