Order
ed instances for SubsemiringClass
and Subsemiring
. #
instance
SubsemiringClass.toIsOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[Semiring R]
[PartialOrder R]
[IsOrderedRing R]
[SubsemiringClass S R]
:
A subsemiring of an ordered semiring is an ordered semiring.
instance
SubsemiringClass.toIsStrictOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[Semiring R]
[PartialOrder R]
[IsStrictOrderedRing R]
[SubsemiringClass S R]
:
A subsemiring of a strict ordered semiring is a strict ordered semiring.
instance
Subsemiring.toIsOrderedRing
{R : Type u_1}
[Semiring R]
[PartialOrder R]
[IsOrderedRing R]
(s : Subsemiring R)
:
A subsemiring of an ordered semiring is an ordered semiring.
instance
Subsemiring.toIsStrictOrderedRing
{R : Type u_1}
[Semiring R]
[PartialOrder R]
[IsStrictOrderedRing R]
(s : Subsemiring R)
:
A subsemiring of a strict ordered semiring is a strict ordered semiring.
The set of nonnegative elements in an ordered semiring, as a subsemiring.
Equations
- Subsemiring.nonneg R = { carrier := Set.Ici 0, mul_mem' := ⋯, one_mem' := ⋯, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
@[simp]