Documentation

Mathlib.AlgebraicGeometry.AffineTransitionLimit

Inverse limits of schemes with affine transition maps #

In this file, we develop API for inverse limits of schemes with affine transition maps, following EGA IV 8 and https://stacks.math.columbia.edu/tag/01YT.

Suppose we have a cofiltered diagram of nonempty quasi-compact schemes, whose transition maps are affine. Then the limit is also nonempty.

Stacks Tag 01Z2

theorem exists_mem_of_isClosed_of_nonempty {I : Type u} [CategoryTheory.Category.{u, u} I] (D : CategoryTheory.Functor I AlgebraicGeometry.Scheme) (c : CategoryTheory.Limits.Cone D) (hc : CategoryTheory.Limits.IsLimit c) [CategoryTheory.IsCofilteredOrEmpty I] [∀ {i j : I} (f : i j), AlgebraicGeometry.IsAffineHom (D.map f)] (Z : (i : I) → Set (D.obj i)) (hZc : ∀ (i : I), IsClosed (Z i)) (hZne : ∀ (i : I), (Z i).Nonempty) (hZcpt : ∀ (i : I), IsCompact (Z i)) (hmapsTo : ∀ {i i' : I} (f : i i'), Set.MapsTo (⇑(CategoryTheory.ConcreteCategory.hom (D.map f).base)) (Z i) (Z i')) :
∃ (s : c.pt), ∀ (i : I), (CategoryTheory.ConcreteCategory.hom (c.π.app i).base) s Z i

Suppose we have a cofiltered diagram of schemes whose transition maps are affine. The limit of a family of compatible nonempty quasicompact closed sets in the diagram is also nonempty.

theorem exists_mem_of_isClosed_of_nonempty' {I : Type u} [CategoryTheory.Category.{u, u} I] (D : CategoryTheory.Functor I AlgebraicGeometry.Scheme) (c : CategoryTheory.Limits.Cone D) (hc : CategoryTheory.Limits.IsLimit c) [CategoryTheory.IsCofilteredOrEmpty I] [∀ {i j : I} (f : i j), AlgebraicGeometry.IsAffineHom (D.map f)] {j : I} (Z : (i : I) → (i j) → Set (D.obj i)) (hZc : ∀ (i : I) (hij : i j), IsClosed (Z i hij)) (hZne : ∀ (i : I) (hij : i j), (Z i hij).Nonempty) (hZcpt : ∀ (i : I) (hij : i j), IsCompact (Z i hij)) (hstab : ∀ (i i' : I) (hi'i : i' i) (hij : i j), Set.MapsTo (⇑(CategoryTheory.ConcreteCategory.hom (D.map hi'i).base)) (Z i' (CategoryTheory.CategoryStruct.comp hi'i hij)) (Z i hij)) :
∃ (s : c.pt), ∀ (i : I) (hij : i j), (CategoryTheory.ConcreteCategory.hom (c.π.app i).base) s Z i hij

A variant of exists_mem_of_isClosed_of_nonempty where the closed sets are only defined for the objects over a given j : I.

Stacks Tag 01Z3