Collapsing covers #
We define the endofunctor on Scheme.Cover P that collapses a cover to a single object cover.
noncomputable def
AlgebraicGeometry.Scheme.Cover.sigma
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
:
Cover (precoverage P) S
If 𝒰 is a cover of S, this is the single object cover where the covering
object is the disjoint union.
Equations
- 𝒰.sigma = { I₀ := PUnit.{?u.34 + 1}, X := fun (x : PUnit.{?u.34 + 1}) => ∐ 𝒰.X, f := fun (x : PUnit.{?u.34 + 1}) => CategoryTheory.Limits.Sigma.desc 𝒰.f, mem₀ := ⋯ }
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.sigma_I₀
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.sigma_f
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
(x✝ : PUnit.{v + 1})
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.sigma_X
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
(x✝ : PUnit.{v + 1})
:
instance
AlgebraicGeometry.Scheme.Cover.instUniqueI₀Sigma
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
:
Equations
noncomputable def
AlgebraicGeometry.Scheme.Cover.toSigma
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
:
𝒰 refines the single object cover defined by 𝒰.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.toSigma_s₀
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
(x✝ : 𝒰.I₀)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.toSigma_h₀
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
(i : 𝒰.I₀)
:
noncomputable def
AlgebraicGeometry.Scheme.Cover.Hom.sigma
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
{𝒰 𝒱 : Cover (precoverage P) S}
(f : 𝒰 ⟶ 𝒱)
:
A refinement of coverings induces a refinement on the single object coverings.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.Hom.sigma_h₀
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
{𝒰 𝒱 : Cover (precoverage P) S}
(f : 𝒰 ⟶ 𝒱)
(x✝ : 𝒰.sigma.I₀)
:
(sigma f).h₀ x✝ = CategoryTheory.Limits.Sigma.desc fun (j : 𝒰.I₀) =>
CategoryTheory.CategoryStruct.comp (f.h₀ j) (CategoryTheory.Limits.Sigma.ι 𝒱.X (f.s₀ j))
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.Hom.sigma_s₀
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
{𝒰 𝒱 : Cover (precoverage P) S}
(f : 𝒰 ⟶ 𝒱)
(x✝ : 𝒰.sigma.I₀)
:
noncomputable def
AlgebraicGeometry.Scheme.Cover.sigmaFunctor
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
:
CategoryTheory.Functor (Cover (precoverage P) S) (Cover (precoverage P) S)
Collapsing a cover to a single object cover is functorial.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.sigmaFunctor_obj
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
(𝒰 : Cover (precoverage P) S)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Cover.sigmaFunctor_map
{P : CategoryTheory.MorphismProperty Scheme}
{S : Scheme}
[IsZariskiLocalAtSource P]
[UnivLE.{v, u}]
{X✝ Y✝ : Cover (precoverage P) S}
(f : X✝ ⟶ Y✝)
: