Properties on the underlying functions of morphisms of schemes. #
This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including
InjectiveSurjectiveIsOpenMapIsClosedMapGeneralizingMapIsEmbeddingIsOpenEmbeddingIsClosedEmbeddingDenseRange(IsDominant)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective).RespectsIso
instance
AlgebraicGeometry.injective_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective)
A morphism of schemes is surjective if the underlying map is.
Instances
theorem
AlgebraicGeometry.surjective_eq_topologically :
@Surjective = topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Surjective
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfIsIsoScheme
{X Y : Scheme}
(f : X ⟶ Y)
[CategoryTheory.IsIso f]
:
instance
AlgebraicGeometry.instSurjectiveCompScheme
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective f]
[Surjective g]
:
theorem
AlgebraicGeometry.Surjective.of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.Surjective.comp_iff
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[Surjective f]
:
@[simp]
theorem
AlgebraicGeometry.range_eq_range_of_surjective
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
(e : X ⟶ Y)
[Surjective e]
(hge : CategoryTheory.CategoryStruct.comp e g = f)
:
theorem
AlgebraicGeometry.mem_range_iff_of_surjective
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
(e : X ⟶ Y)
[Surjective e]
(hge : CategoryTheory.CategoryStruct.comp e g = f)
(s : ↥S)
:
theorem
AlgebraicGeometry.Surjective.sigmaDesc_of_union_range_eq_univ
{X : Scheme}
{ι : Type v}
[Small.{u, v} ι]
{Y : ι → Scheme}
{f : (i : ι) → Y i ⟶ X}
(H : ⋃ (i : ι), Set.range ⇑(CategoryTheory.ConcreteCategory.hom (f i).base) = Set.univ)
:
instance
AlgebraicGeometry.instSurjectiveDescI₀SchemeF
{X : Scheme}
{P : CategoryTheory.MorphismProperty Scheme}
(𝒰 : Scheme.Cover (Scheme.precoverage P) X)
:
Surjective (CategoryTheory.Limits.Sigma.desc fun (i : 𝒰.I₀) => 𝒰.f i)
def
AlgebraicGeometry.Scheme.Hom.cover
{P : CategoryTheory.MorphismProperty Scheme}
{X S : Scheme}
(f : X ⟶ S)
(hf : P f)
[Surjective f]
:
Cover (precoverage P) S
The single object covering by one surjective morphism satisfying P.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.cover_I₀
{P : CategoryTheory.MorphismProperty Scheme}
{X S : Scheme}
(f : X ⟶ S)
(hf : P f)
[Surjective f]
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.cover_X
{P : CategoryTheory.MorphismProperty Scheme}
{X S : Scheme}
(f : X ⟶ S)
(hf : P f)
[Surjective f]
(x✝ : PUnit.{v + 1})
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.cover_f
{P : CategoryTheory.MorphismProperty Scheme}
{X S : Scheme}
(f : X ⟶ S)
(hf : P f)
[Surjective f]
(x✝ : PUnit.{v + 1})
:
instance
AlgebraicGeometry.instUniqueI₀SchemeCover
{P : CategoryTheory.MorphismProperty Scheme}
{X S : Scheme}
(f : X ⟶ S)
(hf : P f)
[Surjective f]
:
Unique (Scheme.Hom.cover f hf).I₀
Equations
instance
AlgebraicGeometry.injective_isStableUnderComposition :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] (x : α → β) =>
Function.Injective x).IsStableUnderComposition
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap).RespectsIso
instance
AlgebraicGeometry.isOpenMap_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap)
instance
AlgebraicGeometry.instIsZariskiLocalAtSourceTopologicallyIsOpenMap :
IsZariskiLocalAtSource (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap).RespectsIso
instance
AlgebraicGeometry.isClosedMap_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsEmbedding).RespectsIso
instance
AlgebraicGeometry.isEmbedding_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsEmbedding)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsOpenEmbedding).RespectsIso
instance
AlgebraicGeometry.isOpenEmbedding_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsOpenEmbedding)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedEmbedding :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsClosedEmbedding).RespectsIso
instance
AlgebraicGeometry.isClosedEmbedding_isZariskiLocalAtTarget :
IsZariskiLocalAtTarget
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Topology.IsClosedEmbedding)
A morphism of schemes is dominant if the underlying map has dense range.
- denseRange : DenseRange ⇑(CategoryTheory.ConcreteCategory.hom f.base)
Instances
theorem
AlgebraicGeometry.dominant_eq_topologically :
@IsDominant = topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => DenseRange
@[instance 100]
instance
AlgebraicGeometry.instIsDominantCompScheme
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[IsDominant f]
[IsDominant g]
:
theorem
AlgebraicGeometry.IsDominant.of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : IsDominant (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.IsDominant.comp_iff
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[IsDominant f]
:
theorem
AlgebraicGeometry.surjective_of_isDominant_of_isClosed_range
{X Y : Scheme}
(f : X ⟶ Y)
[IsDominant f]
(hf : IsClosed (Set.range ⇑(CategoryTheory.ConcreteCategory.hom f.base)))
:
theorem
AlgebraicGeometry.IsDominant.of_comp_of_isOpenImmersion
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : IsDominant (CategoryTheory.CategoryStruct.comp f g)]
[IsOpenImmersion g]
:
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyGeneralizingMap :
(topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => GeneralizingMap).RespectsIso
instance
AlgebraicGeometry.instIsZariskiLocalAtSourceTopologicallyGeneralizingMap :
IsZariskiLocalAtSource (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => GeneralizingMap)
instance
AlgebraicGeometry.instIsZariskiLocalAtTargetTopologicallyGeneralizingMap :
IsZariskiLocalAtTarget (topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => GeneralizingMap)