Documentation

Mathlib.AlgebraicGeometry.Restrict

Restriction of Schemes and Morphisms #

Main definition #

Open subset of a scheme as a scheme.

Equations
Instances For

    The restriction of a scheme to an open subset.

    Equations
    Instances For
      @[simp]

      The global sections of the restriction is isomorphic to the sections on the open set.

      Equations
      Instances For
        def AlgebraicGeometry.Scheme.Opens.stalkIso {X : Scheme} (U : X.Opens) (x : U) :
        (↑U).presheaf.stalk x X.presheaf.stalk x

        The stalks of an open subscheme are isomorphic to the stalks of the original scheme.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom {X : Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) :
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv {X : Scheme} (U : X.Opens) (V : (↑U).Opens) (x : U) (hx : x V) :
          def AlgebraicGeometry.Scheme.openCoverOfISupEqTop {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :

          If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

          Equations
          • X.openCoverOfISupEqTop U hU = { J := s, obj := fun (i : s) => (U i), map := fun (i : s) => (U i).ι, f := fun (x : X) => .choose, covers := , map_prop := }
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_J {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_map {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
            (X.openCoverOfISupEqTop U hU).map i = (U i).ι
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_obj {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
            (X.openCoverOfISupEqTop U hU).obj i = (U i)
            def AlgebraicGeometry.opensRestrict {X : Scheme} (U : X.Opens) :
            (↑U).Opens { V : X.Opens // V U }

            The open sets of an open subscheme corresponds to the open sets containing in the subset.

            Equations
            Instances For
              @[simp]
              theorem AlgebraicGeometry.coe_opensRestrict_apply_coe {X : Scheme} (U : X.Opens) (a✝ : (↑U).Opens) :
              ((opensRestrict U) a✝) = (fun (a : U) => a) '' a✝
              @[deprecated AlgebraicGeometry.Scheme.map_basicOpen (since := "2024-10-23")]

              Alias of AlgebraicGeometry.Scheme.map_basicOpen.

              noncomputable def AlgebraicGeometry.Scheme.homOfLE (X : Scheme) {U V : X.Opens} (e : U V) :
              U V

              If U ≤ V, then U is also a subscheme of V.

              Equations
              Instances For
                @[simp]
                theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE (X : Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) :
                @[simp]
                theorem AlgebraicGeometry.Scheme.homOfLE_apply {X : Scheme} {U V : X.Opens} (e : U V) (x : U) :
                @[simp]
                theorem AlgebraicGeometry.Scheme.homOfLE_app {X : Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :
                def AlgebraicGeometry.Scheme.Opens.iSupOpenCover {J : Type u_1} {X : Scheme} (U : JX.Opens) :
                (↑(⨆ (i : J), U i)).OpenCover

                The open cover of ⋃ Vᵢ by Vᵢ.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The functor taking open subsets of X to open subschemes of X.

                  Equations
                  Instances For

                    The functor that restricts to open subschemes and then takes global section is isomorphic to the structure sheaf.

                    Equations
                    Instances For

                      X ∣_ U ∣_ V is isomorphic to X ∣_ V ∣_ U

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        noncomputable def AlgebraicGeometry.Scheme.Hom.isoImage {X Y : Scheme} (f : X.Hom Y) [IsOpenImmersion f] (U : X.Opens) :
                        U (f.opensFunctor.obj U)

                        If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

                        Equations
                        Instances For

                          If f : X ⟶ Y is an open immersion, then X is isomorphic to its image in Y.

                          Equations
                          Instances For

                            (⊤ : X.Opens) as a scheme is isomorphic to X.

                            Equations
                            Instances For
                              noncomputable def AlgebraicGeometry.Scheme.isoOfEq (X : Scheme) {U V : X.Opens} (e : U = V) :
                              U V

                              If U = V, then X ∣_ U is isomorphic to X ∣_ V.

                              Equations
                              Instances For

                                The restriction of an isomorphism onto an open set.

                                Equations
                                Instances For
                                  noncomputable def AlgebraicGeometry.Scheme.Opens.isoOfLE {X : Scheme} {U V : X.Opens} (hUV : U V) :

                                  If U ≤ V are opens of X, the restriction of U to V is isomorphic to U.

                                  Equations
                                  Instances For

                                    Given a morphism f : X ⟶ Y and an open set U ⊆ Y, we have X ×[Y] U ≅ X |_{f ⁻¹ U}

                                    Equations
                                    Instances For

                                      The restriction of a morphism X ⟶ Y onto X |_{f ⁻¹ U} ⟶ Y |_ U.

                                      Equations
                                      Instances For

                                        the notation for restricting a morphism of scheme to an open subset of the target scheme

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          theorem AlgebraicGeometry.isPullback_opens_inf_le {X : Scheme} {U V W : X.Opens} (hU : U W) (hV : V W) :

                                          Restricting a morphism onto the image of an open immersion is isomorphic to the base change along the immersion.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            The restrictions onto two equal open sets are isomorphic. This currently has bad defeqs when unfolded, but it should not matter for now. Replace this definition if better defeqs are needed.

                                            Equations
                                            Instances For

                                              Restricting a morphism twice is isomorphic to one restriction.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                Restricting a morphism twice onto a basic open set is isomorphic to one restriction.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  The stalk map of a restriction of a morphism is isomorphic to the stalk map of the original map.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    def AlgebraicGeometry.Scheme.Hom.resLE {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
                                                    V U

                                                    The restriction of a morphism f : X ⟶ Y to open sets on the source and target.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem AlgebraicGeometry.Scheme.Hom.map_resLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V' V) :
                                                      @[simp]
                                                      theorem AlgebraicGeometry.Scheme.Hom.resLE_map {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U U') :
                                                      theorem AlgebraicGeometry.Scheme.Hom.resLE_congr {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : CategoryTheory.MorphismProperty Scheme) :
                                                      P (resLE f U V e) P (resLE f U' V' )
                                                      theorem AlgebraicGeometry.Scheme.Hom.resLE_appLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) (W : (↑V).Opens) (e' : W (TopologicalSpace.Opens.map (resLE f U V e).base).obj O) :
                                                      appLE (resLE f U V e) O W e' = appLE f ((opensFunctor U.ι).obj O) ((opensFunctor V.ι).obj W)

                                                      The stalk map of f.resLE U V at x : V is is the stalk map of f at x.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For

                                                        f.resLE U V induces f.appLE U V on global sections.

                                                        Equations
                                                        Instances For
                                                          noncomputable def AlgebraicGeometry.Scheme.OpenCover.restrict {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                          (↑U).OpenCover

                                                          The restriction of an open cover to an open subset.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_obj {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
                                                            (𝒰.restrict U).obj x✝ = ((TopologicalSpace.Opens.map (𝒰.map x✝).base).obj U)
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_map {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
                                                            (𝒰.restrict U).map x✝ = 𝒰.map x✝ ∣_ U
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_J {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                            (𝒰.restrict U).J = 𝒰.J