Degenerate simplices #
Given a simplicial set X and n : ℕ, we define the sets X.degenerate n
and X.nonDegenerate n of degenerate or non-degenerate simplices of dimension n.
Any simplex x : X _⦋n⦌ can be written in a unique way as X.map f.op y
for an epimorphism f : ⦋n⦌ ⟶ ⦋m⦌ and a non-degenerate m-simplex y
(see lemmas exists_nonDegenerate, unique_nonDegenerate_dim,
unique_nonDegenerate_simplex and unique_nonDegenerate_map).
An n-simplex of a simplicial set X is degenerate if it is in the range
of X.map f.op for some morphism f : [n] ⟶ [m] with m < n.
Equations
- X.degenerate n = {x : X.obj (Opposite.op (SimplexCategory.mk n)) | ∃ (m : ℕ) (_ : m < n) (f : SimplexCategory.mk n ⟶ SimplexCategory.mk m), x ∈ Set.range (X.map f.op)}
Instances For
The set of n-dimensional non-degenerate simplices in a simplicial
set X is the complement of X.degenerate n.
Equations
- X.nonDegenerate n = (X.degenerate n)ᶜ
Instances For
Auxiliary definitions and lemmas for the lemmas
unique_nonDegenerate_dim, unique_nonDegenerate_simplex and
unique_nonDegenerate_map which assert the uniqueness of the
decomposition obtained in the lemma exists_nonDegenerate.
The following lemmas unique_nonDegenerate_dim, unique_nonDegenerate_simplex and
unique_nonDegenerate_map assert the uniqueness of the decomposition
obtained in the lemma exists_nonDegenerate.