The monoidal category structure on simplicial sets #
This file defines an instance of chosen finite products
for the category SSet. It follows from the fact
the SSet if a category of functors to the category
of types and that the category of types have chosen
finite products. As a result, we obtain a monoidal
category structure on SSet.
@[simp]
theorem
SSet.leftUnitor_hom_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj (CategoryTheory.MonoidalCategoryStruct.tensorUnit SSet) K).obj Δ)
:
@[simp]
@[simp]
theorem
SSet.rightUnitor_hom_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj K (CategoryTheory.MonoidalCategoryStruct.tensorUnit SSet)).obj Δ)
:
@[simp]
@[simp]
theorem
SSet.tensorHom_app_apply
{K K' L L' : SSet}
(f : K ⟶ K')
(g : L ⟶ L')
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj K L).obj Δ)
:
@[simp]
theorem
SSet.whiskerLeft_app_apply
(K : SSet)
{L L' : SSet}
(g : L ⟶ L')
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj K L).obj Δ)
:
@[simp]
theorem
SSet.whiskerRight_app_apply
{K K' : SSet}
(f : K ⟶ K')
(L : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj K L).obj Δ)
:
@[simp]
theorem
SSet.associator_hom_app_apply
(K L M : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj (CategoryTheory.MonoidalCategoryStruct.tensorObj K L) M).obj Δ)
:
@[simp]
theorem
SSet.associator_inv_app_apply
(K L M : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj K (CategoryTheory.MonoidalCategoryStruct.tensorObj L M)).obj Δ)
:
The bijection (𝟙_ SSet ⟶ K) ≃ K _⦋0⦌.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
SSet.instFiniteObjOppositeSimplexCategoryTensorObj
(X Y : SSet)
(n : SimplexCategoryᵒᵖ)
[Finite (X.obj n)]
[Finite (Y.obj n)]
:
The external product of subcomplexes of simplicial sets.
Instances For
@[simp]
theorem
SSet.Subcomplex.prod_obj
{X Y : SSet}
(A : X.Subcomplex)
(B : Y.Subcomplex)
(Δ : SimplexCategoryᵒᵖ)
:
theorem
SSet.Subcomplex.prod_monotone
{X Y : SSet}
{A₁ A₂ : X.Subcomplex}
(hX : A₁ ≤ A₂)
{B₁ B₂ : Y.Subcomplex}
(hY : B₁ ≤ B₂)
:
@[simp]
@[simp]
theorem
SSet.ι₀_comp_assoc
{X Y : SSet}
(f : X ⟶ Y)
{Z : SSet}
(h : CategoryTheory.MonoidalCategoryStruct.tensorObj Y (stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Z)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
SSet.ι₁_comp_assoc
{X Y : SSet}
(f : X ⟶ Y)
{Z : SSet}
(h : CategoryTheory.MonoidalCategoryStruct.tensorObj Y (stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Z)
:
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
SSet.Truncated.tensor_map_apply_fst
{n : ℕ}
{X Y : Truncated n}
{d e : (SimplexCategory.Truncated n)ᵒᵖ}
(f : d ⟶ e)
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).obj d)
:
@[simp]
theorem
SSet.Truncated.tensor_map_apply_snd
{n : ℕ}
{X Y : Truncated n}
{d e : (SimplexCategory.Truncated n)ᵒᵖ}
(f : d ⟶ e)
(x : (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).obj d)
: