Indexed product of sets with unique differentiability property #
In this file we prove that the indexed product
of a family sets with unique differentiability property
has the same property, see UniqueDiffOn.pi and UniqueDiffOn.univ_pi.
theorem
mapsTo_tangentConeAt_pi
{๐ : Type u_1}
[Semiring ๐]
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[(i : ฮน) โ TopologicalSpace (E i)]
[โ (i : ฮน), ContinuousAdd (E i)]
[โ (i : ฮน), ContinuousConstSMul ๐ (E i)]
{s : (i : ฮน) โ Set (E i)}
{x : (i : ฮน) โ E i}
[DecidableEq ฮน]
{i : ฮน}
(hi : โ (j : ฮน), j โ i โ x j โ closure (s j))
:
Set.MapsTo (Pi.single i) (tangentConeAt ๐ (s i) (x i)) (tangentConeAt ๐ (Set.univ.pi s) x)
The tangent cone of a product contains the tangent cone of each factor.
theorem
UniqueDiffWithinAt.univ_pi
{๐ : Type u_1}
[Semiring ๐]
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[(i : ฮน) โ TopologicalSpace (E i)]
[โ (i : ฮน), ContinuousAdd (E i)]
[โ (i : ฮน), ContinuousConstSMul ๐ (E i)]
{s : (i : ฮน) โ Set (E i)}
{x : (i : ฮน) โ E i}
(h : โ (i : ฮน), UniqueDiffWithinAt ๐ (s i) (x i))
:
UniqueDiffWithinAt ๐ (Set.univ.pi s) x
theorem
UniqueDiffOn.univ_pi
{๐ : Type u_1}
[Semiring ๐]
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[(i : ฮน) โ TopologicalSpace (E i)]
[โ (i : ฮน), ContinuousAdd (E i)]
[โ (i : ฮน), ContinuousConstSMul ๐ (E i)]
{s : (i : ฮน) โ Set (E i)}
(h : โ (i : ฮน), UniqueDiffOn ๐ (s i))
:
UniqueDiffOn ๐ (Set.univ.pi s)
The product of a family of sets of unique differentiability is a set of unique differentiability.
theorem
UniqueDiffWithinAt.pi
{๐ : Type u_1}
[DivisionSemiring ๐]
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[TopologicalSpace ๐]
[(nhdsWithin 0 {0}แถ).NeBot]
[(i : ฮน) โ TopologicalSpace (E i)]
[โ (i : ฮน), ContinuousAdd (E i)]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
{s : (i : ฮน) โ Set (E i)}
{x : (i : ฮน) โ E i}
{I : Set ฮน}
(h : โ i โ I, UniqueDiffWithinAt ๐ (s i) (x i))
:
UniqueDiffWithinAt ๐ (I.pi s) x
theorem
UniqueDiffOn.pi
{๐ : Type u_1}
[DivisionSemiring ๐]
{ฮน : Type u_2}
{E : ฮน โ Type u_3}
[(i : ฮน) โ AddCommGroup (E i)]
[(i : ฮน) โ Module ๐ (E i)]
[TopologicalSpace ๐]
[(nhdsWithin 0 {0}แถ).NeBot]
[(i : ฮน) โ TopologicalSpace (E i)]
[โ (i : ฮน), ContinuousAdd (E i)]
[โ (i : ฮน), ContinuousSMul ๐ (E i)]
{s : (i : ฮน) โ Set (E i)}
{I : Set ฮน}
(h : โ i โ I, UniqueDiffOn ๐ (s i))
:
UniqueDiffOn ๐ (I.pi s)
The product of a family of sets of unique differentiability is a set of unique differentiability.