Documentation

Mathlib.Analysis.Calculus.TangentCone.Pi

Indexed product of sets with unique differentiability property #

In this file we prove that the indexed product of a family sets with unique differentiability property has the same property, see UniqueDiffOn.pi and UniqueDiffOn.univ_pi.

theorem mapsTo_tangentConeAt_pi {๐•œ : Type u_1} [Semiring ๐•œ] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [(i : ฮน) โ†’ TopologicalSpace (E i)] [โˆ€ (i : ฮน), ContinuousAdd (E i)] [โˆ€ (i : ฮน), ContinuousConstSMul ๐•œ (E i)] {s : (i : ฮน) โ†’ Set (E i)} {x : (i : ฮน) โ†’ E i} [DecidableEq ฮน] {i : ฮน} (hi : โˆ€ (j : ฮน), j โ‰  i โ†’ x j โˆˆ closure (s j)) :
Set.MapsTo (Pi.single i) (tangentConeAt ๐•œ (s i) (x i)) (tangentConeAt ๐•œ (Set.univ.pi s) x)

The tangent cone of a product contains the tangent cone of each factor.

theorem UniqueDiffWithinAt.univ_pi {๐•œ : Type u_1} [Semiring ๐•œ] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [(i : ฮน) โ†’ TopologicalSpace (E i)] [โˆ€ (i : ฮน), ContinuousAdd (E i)] [โˆ€ (i : ฮน), ContinuousConstSMul ๐•œ (E i)] {s : (i : ฮน) โ†’ Set (E i)} {x : (i : ฮน) โ†’ E i} (h : โˆ€ (i : ฮน), UniqueDiffWithinAt ๐•œ (s i) (x i)) :
theorem UniqueDiffOn.univ_pi {๐•œ : Type u_1} [Semiring ๐•œ] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [(i : ฮน) โ†’ TopologicalSpace (E i)] [โˆ€ (i : ฮน), ContinuousAdd (E i)] [โˆ€ (i : ฮน), ContinuousConstSMul ๐•œ (E i)] {s : (i : ฮน) โ†’ Set (E i)} (h : โˆ€ (i : ฮน), UniqueDiffOn ๐•œ (s i)) :
UniqueDiffOn ๐•œ (Set.univ.pi s)

The product of a family of sets of unique differentiability is a set of unique differentiability.

theorem UniqueDiffWithinAt.pi {๐•œ : Type u_1} [DivisionSemiring ๐•œ] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [TopologicalSpace ๐•œ] [(nhdsWithin 0 {0}แถœ).NeBot] [(i : ฮน) โ†’ TopologicalSpace (E i)] [โˆ€ (i : ฮน), ContinuousAdd (E i)] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] {s : (i : ฮน) โ†’ Set (E i)} {x : (i : ฮน) โ†’ E i} {I : Set ฮน} (h : โˆ€ i โˆˆ I, UniqueDiffWithinAt ๐•œ (s i) (x i)) :
UniqueDiffWithinAt ๐•œ (I.pi s) x
theorem UniqueDiffOn.pi {๐•œ : Type u_1} [DivisionSemiring ๐•œ] {ฮน : Type u_2} {E : ฮน โ†’ Type u_3} [(i : ฮน) โ†’ AddCommGroup (E i)] [(i : ฮน) โ†’ Module ๐•œ (E i)] [TopologicalSpace ๐•œ] [(nhdsWithin 0 {0}แถœ).NeBot] [(i : ฮน) โ†’ TopologicalSpace (E i)] [โˆ€ (i : ฮน), ContinuousAdd (E i)] [โˆ€ (i : ฮน), ContinuousSMul ๐•œ (E i)] {s : (i : ฮน) โ†’ Set (E i)} {I : Set ฮน} (h : โˆ€ i โˆˆ I, UniqueDiffOn ๐•œ (s i)) :
UniqueDiffOn ๐•œ (I.pi s)

The product of a family of sets of unique differentiability is a set of unique differentiability.