Inner product space on Hᵐᵒᵖ #
This file defines the inner product space structure on Hᵐᵒᵖ where we define
the inner product naturally. We also define OrthonormalBasis.mulOpposite.
The inner product of Hᵐᵒᵖ is given by ⟪x, y⟫ ↦ ⟪x.unop, y.unop⟫.
Equations
- MulOpposite.instInner = { inner := fun (x y : Hᵐᵒᵖ) => inner 𝕜 (MulOpposite.unop x) (MulOpposite.unop y) }
instance
MulOpposite.instInnerProductSpace
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
Module.Basis.mulOpposite_is_orthonormal_iff
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
{ι : Type u_3}
(b : Basis ι 𝕜 H)
:
noncomputable def
OrthonormalBasis.mulOpposite
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
{ι : Type u_3}
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 H)
:
OrthonormalBasis ι 𝕜 Hᵐᵒᵖ
The multiplicative opposite of an orthonormal basis b, i.e., b i ↦ op (b i).
Equations
Instances For
theorem
MulOpposite.isometry_opLinearEquiv
{R : Type u_3}
{M : Type u_4}
[Semiring R]
[SeminormedAddCommGroup M]
[Module R M]
:
Isometry ⇑(opLinearEquiv R)
def
MulOpposite.opLinearIsometryEquiv
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
The linear isometry equivalence version of the function op.
Equations
- MulOpposite.opLinearIsometryEquiv 𝕜 H = { toLinearEquiv := MulOpposite.opLinearEquiv 𝕜, norm_map' := ⋯ }
Instances For
@[simp]
theorem
MulOpposite.opLinearIsometryEquiv_apply
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
(a✝ : H)
:
@[simp]
theorem
MulOpposite.opLinearIsometryEquiv_symm_apply
(𝕜 : Type u_1)
(H : Type u_2)
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
(a✝ : Hᵐᵒᵖ)
:
@[simp]
theorem
MulOpposite.toLinearEquiv_opLinearIsometryEquiv
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
:
@[simp]
theorem
MulOpposite.toContinuousLinearEquiv_opLinearIsometryEquiv
{𝕜 : Type u_1}
{H : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 H]
: