Documentation

Mathlib.Analysis.Normed.Group.SemiNormedGrp

The category of seminormed groups #

We define SemiNormedGrp, the category of seminormed groups and normed group homs between them, as well as SemiNormedGrp₁, the subcategory of norm non-increasing morphisms.

structure SemiNormedGrp :
Type (u + 1)

The category of seminormed abelian groups and bounded group homomorphisms.

Instances For
    @[reducible, inline]

    Construct a bundled SemiNormedGrp from the underlying type and typeclass.

    Equations
    Instances For
      structure SemiNormedGrp.Hom (M N : SemiNormedGrp) :

      The type of morphisms in SemiNormedGrp

      Instances For
        theorem SemiNormedGrp.Hom.ext_iff {M N : SemiNormedGrp} {x y : M.Hom N} :
        x = y x.hom' = y.hom'
        theorem SemiNormedGrp.Hom.ext {M N : SemiNormedGrp} {x y : M.Hom N} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]

        Turn a morphism in SemiNormedGrp back into a NormedAddGroupHom.

        Equations
        Instances For
          @[reducible, inline]

          Typecheck a NormedAddGroupHom as a morphism in SemiNormedGrp.

          Equations
          Instances For

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              theorem SemiNormedGrp.ext {M N : SemiNormedGrp} {f₁ f₂ : M N} (h : ∀ (x : M.carrier), (CategoryTheory.ConcreteCategory.hom f₁) x = (CategoryTheory.ConcreteCategory.hom f₂) x) :
              f₁ = f₂
              theorem SemiNormedGrp.ext_iff {M N : SemiNormedGrp} {f₁ f₂ : M N} :
              theorem SemiNormedGrp.hom_ext {M N : SemiNormedGrp} {f g : M N} (hf : Hom.hom f = Hom.hom g) :
              f = g
              theorem SemiNormedGrp.hom_ext_iff {M N : SemiNormedGrp} {f g : M N} :
              @[simp]
              theorem SemiNormedGrp.ofHom_hom {M N : SemiNormedGrp} (f : M N) :
              @[simp]
              theorem SemiNormedGrp.hom_add {V W : SemiNormedGrp} (f g : V W) :
              @[simp]
              theorem SemiNormedGrp.hom_neg {V W : SemiNormedGrp} (f : V W) :
              @[simp]
              theorem SemiNormedGrp.hom_sub {V W : SemiNormedGrp} (f g : V W) :
              @[simp]
              theorem SemiNormedGrp.hom_nsum {V W : SemiNormedGrp} (n : ) (f : V W) :
              Hom.hom (n f) = n Hom.hom f
              @[simp]
              theorem SemiNormedGrp.hom_zsum {V W : SemiNormedGrp} (n : ) (f : V W) :
              Hom.hom (n f) = n Hom.hom f
              structure SemiNormedGrp₁ :
              Type (u + 1)

              SemiNormedGrp₁ is a type synonym for SemiNormedGrp, which we shall equip with the category structure consisting only of the norm non-increasing maps.

              Instances For
                @[reducible, inline]

                Construct a bundled SemiNormedGrp₁ from the underlying type and typeclass.

                Equations
                Instances For

                  The type of morphisms in SemiNormedGrp₁

                  Instances For
                    theorem SemiNormedGrp₁.Hom.ext_iff {M N : SemiNormedGrp₁} {x y : M.Hom N} :
                    x = y x.hom' = y.hom'
                    theorem SemiNormedGrp₁.Hom.ext {M N : SemiNormedGrp₁} {x y : M.Hom N} (hom' : x.hom' = y.hom') :
                    x = y
                    Equations
                    • One or more equations did not get rendered due to their size.
                    @[reducible, inline]

                    Turn a morphism in SemiNormedGrp₁ back into a norm-nonincreasing NormedAddGroupHom.

                    Equations
                    Instances For

                      Use the ConcreteCategory.hom projection for @[simps] lemmas.

                      Equations
                      Instances For
                        Equations

                        The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                        theorem SemiNormedGrp₁.ext {M N : SemiNormedGrp₁} {f₁ f₂ : M N} (h : ∀ (x : M.carrier), (Hom.hom f₁) x = (Hom.hom f₂) x) :
                        f₁ = f₂
                        theorem SemiNormedGrp₁.ext_iff {M N : SemiNormedGrp₁} {f₁ f₂ : M N} :
                        f₁ = f₂ ∀ (x : M.carrier), (Hom.hom f₁) x = (Hom.hom f₂) x
                        @[simp]
                        theorem SemiNormedGrp₁.hom_comp {M N O : SemiNormedGrp₁} (f : M N) (g : N O) :
                        theorem SemiNormedGrp₁.comp_apply {M N O : SemiNormedGrp₁} (f : M N) (g : N O) (r : M.carrier) :
                        theorem SemiNormedGrp₁.hom_ext {M N : SemiNormedGrp₁} {f g : M N} (hf : Hom.hom f = Hom.hom g) :
                        f = g
                        @[simp]
                        theorem SemiNormedGrp₁.mkHom_hom {M N : SemiNormedGrp₁} (f : M N) :
                        mkHom (Hom.hom f) = f
                        @[simp]
                        theorem SemiNormedGrp₁.inv_hom_apply {M N : SemiNormedGrp₁} (e : M N) (r : M.carrier) :
                        (Hom.hom e.inv) ((Hom.hom e.hom) r) = r
                        @[simp]
                        theorem SemiNormedGrp₁.hom_inv_apply {M N : SemiNormedGrp₁} (e : M N) (s : N.carrier) :
                        (Hom.hom e.hom) ((Hom.hom e.inv) s) = s

                        Promote an isomorphism in SemiNormedGrp to an isomorphism in SemiNormedGrp₁.

                        Equations
                        Instances For
                          Equations
                          • One or more equations did not get rendered due to their size.
                          theorem SemiNormedGrp₁.coe_comp {M N K : SemiNormedGrp₁} (f : M N) (g : N K) :
                          Equations
                          @[simp]
                          theorem SemiNormedGrp₁.zero_apply {V W : SemiNormedGrp₁} (x : V.carrier) :
                          (Hom.hom 0) x = 0
                          Equations
                          • One or more equations did not get rendered due to their size.