Summability of logarithms #
We give conditions under which the logarithms of a summble sequence is summable. We also use this
to relate summability of f
to multipliability of 1 + f
.
theorem
Complex.multipliable_of_summable_log
{ι : Type u_1}
{f : ι → ℂ}
(hf : Summable fun (i : ι) => log (f i))
:
theorem
Complex.multipliable_one_add_of_summable
{ι : Type u_1}
{f : ι → ℂ}
(hf : Summable f)
:
Multipliable fun (i : ι) => 1 + f i
theorem
Real.multipliable_of_summable_log'
{ι : Type u_1}
{f : ι → ℝ}
(hfn : ∀ᶠ (i : ι) in Filter.cofinite, 0 < f i)
(hf : Summable fun (i : ι) => log (f i))
:
Alternate version of Real.multipliable_of_summable_log
assuming only that positivity holds
eventually.
theorem
Real.multipliable_one_add_of_summable
{ι : Type u_1}
{f : ι → ℝ}
(hf : Summable f)
:
Multipliable fun (i : ι) => 1 + f i
theorem
Complex.tendstoUniformlyOn_tsum_nat_log_one_add
{α : Type u_2}
{f : ℕ → α → ℂ}
(K : Set α)
{u : ℕ → ℝ}
(hu : Summable u)
(h : ∀ᶠ (n : ℕ) in Filter.atTop, ∀ x ∈ K, ‖f n x‖ ≤ u n)
:
TendstoUniformlyOn (fun (n : ℕ) (a : α) => ∑ i ∈ Finset.range n, log (1 + f i a))
(fun (a : α) => ∑' (i : ℕ), log (1 + f i a)) Filter.atTop K
theorem
Multipliable.eventually_bounded_finset_prod
{ι : Type u_1}
{v : ι → ℝ}
(hv : Multipliable v)
:
theorem
multipliable_norm_one_add_of_summable_norm
{ι : Type u_1}
{R : Type u_2}
[NormedCommRing R]
[NormOneClass R]
{f : ι → R}
(hf : Summable fun (i : ι) => ‖f i‖)
:
Multipliable fun (i : ι) => ‖1 + f i‖
theorem
multipliable_one_add_of_summable
{ι : Type u_1}
{R : Type u_2}
[NormedCommRing R]
[NormOneClass R]
{f : ι → R}
[CompleteSpace R]
(hf : Summable fun (i : ι) => ‖f i‖)
:
Multipliable fun (i : ι) => 1 + f i
In a complete normed ring, ∏' i, (1 + f i)
is convergent if the sum of real numbers
∑' i, ‖f i‖
is convergent.