Documentation

Mathlib.Analysis.SpecialFunctions.Log.Summable

Summability of logarithms #

We give conditions under which the logarithms of a summble sequence is summable. We also use this to relate summability of f to multipliability of 1 + f.

theorem Complex.hasProd_of_hasSum_log {ι : Type u_1} {f : ι} {a : } (hfn : ∀ (i : ι), f i 0) (hf : HasSum (fun (i : ι) => log (f i)) a) :
HasProd f (exp a)
theorem Complex.multipliable_of_summable_log {ι : Type u_1} {f : ι} (hf : Summable fun (i : ι) => log (f i)) :
theorem Complex.cexp_tsum_eq_tprod {ι : Type u_1} {f : ι} (hfn : ∀ (i : ι), f i 0) (hf : Summable fun (i : ι) => log (f i)) :
exp (∑' (i : ι), log (f i)) = ∏' (i : ι), f i

The exponential of a convergent sum of complex logs is the corresponding infinite product.

theorem Complex.summable_log_one_add_of_summable {ι : Type u_1} {f : ι} (hf : Summable f) :
Summable fun (i : ι) => log (1 + f i)
theorem Complex.multipliable_one_add_of_summable {ι : Type u_1} {f : ι} (hf : Summable f) :
Multipliable fun (i : ι) => 1 + f i
theorem Real.hasProd_of_hasSum_log {ι : Type u_1} {f : ι} {a : } (hfn : ∀ (i : ι), 0 < f i) (hf : HasSum (fun (i : ι) => log (f i)) a) :
HasProd f (exp a)
theorem Real.multipliable_of_summable_log {ι : Type u_1} {f : ι} (hfn : ∀ (i : ι), 0 < f i) (hf : Summable fun (i : ι) => log (f i)) :
theorem Real.multipliable_of_summable_log' {ι : Type u_1} {f : ι} (hfn : ∀ᶠ (i : ι) in Filter.cofinite, 0 < f i) (hf : Summable fun (i : ι) => log (f i)) :

Alternate version of Real.multipliable_of_summable_log assuming only that positivity holds eventually.

theorem Real.rexp_tsum_eq_tprod {ι : Type u_1} {f : ι} (hfn : ∀ (i : ι), 0 < f i) (hf : Summable fun (i : ι) => log (f i)) :
exp (∑' (i : ι), log (f i)) = ∏' (i : ι), f i

The exponential of a convergent sum of real logs is the corresponding infinite product.

theorem Real.summable_log_one_add_of_summable {ι : Type u_1} {f : ι} (hf : Summable f) :
Summable fun (i : ι) => log (1 + f i)
theorem Real.multipliable_one_add_of_summable {ι : Type u_1} {f : ι} (hf : Summable f) :
Multipliable fun (i : ι) => 1 + f i
theorem Complex.tendstoUniformlyOn_tsum_nat_log_one_add {α : Type u_2} {f : α} (K : Set α) {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) :
TendstoUniformlyOn (fun (n : ) (a : α) => iFinset.range n, log (1 + f i a)) (fun (a : α) => ∑' (i : ), log (1 + f i a)) Filter.atTop K
theorem Multipliable.eventually_bounded_finset_prod {ι : Type u_1} {v : ι} (hv : Multipliable v) :
r₁ > 0, ∃ (s₁ : Finset ι), ∀ (t : Finset ι), s₁ tit, v i r₁
theorem multipliable_norm_one_add_of_summable_norm {ι : Type u_1} {R : Type u_2} [NormedCommRing R] [NormOneClass R] {f : ιR} (hf : Summable fun (i : ι) => f i) :
Multipliable fun (i : ι) => 1 + f i
theorem Finset.norm_prod_one_add_sub_one_le {ι : Type u_1} {R : Type u_2} [NormedCommRing R] [NormOneClass R] (t : Finset ι) (f : ιR) :
it, (1 + f i) - 1 Real.exp (∑ it, f i) - 1
theorem prod_vanishing_of_summable_norm {ι : Type u_1} {R : Type u_2} [NormedCommRing R] [NormOneClass R] {f : ιR} (hf : Summable fun (i : ι) => f i) {ε : } ( : 0 < ε) :
∃ (s₂ : Finset ι), ∀ (t : Finset ι), Disjoint t s₂it, (1 + f i) - 1 < ε
theorem multipliable_one_add_of_summable {ι : Type u_1} {R : Type u_2} [NormedCommRing R] [NormOneClass R] {f : ιR} [CompleteSpace R] (hf : Summable fun (i : ι) => f i) :
Multipliable fun (i : ι) => 1 + f i

In a complete normed ring, ∏' i, (1 + f i) is convergent if the sum of real numbers ∑' i, ‖f i‖ is convergent.