Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev.Orthogonality

Chebyshev polynomials over the reals: orthogonality #

Chebyshev T polynomials are orthogonal with respect to √(1 - x ^ 2)⁻¹.

Main statements #

TODO #

Lebesgue measure scaled by √(1 - x ^ 2)⁻¹.

Equations
Instances For
    theorem Polynomial.Chebyshev.integral_measureT (f : ) :
    (x : ), f x measureT = (x : ) in -1..1, f x * (1 - x ^ 2)⁻¹
    theorem Polynomial.Chebyshev.integral_measureT_eq_integral_cos {f : } (hf₁ : ContinuousOn (fun (θ : ) => f (Real.cos θ)) (Set.Ioo 0 Real.pi)) (hf₂ : MeasureTheory.IntegrableOn (fun (x : ) => f (Real.cos x)) (Set.Icc 0 Real.pi) MeasureTheory.volume) (hf₃ : MeasureTheory.IntegrableOn (fun (x : ) => f x * (1 - x ^ 2)⁻¹) (Set.Icc (-1) 1) MeasureTheory.volume) :
    (x : ), f x measureT = (θ : ) in 0..Real.pi, f (Real.cos θ)