Documentation

Mathlib.CategoryTheory.Action.Limits

Categorical properties of Action V G #

We show:

F : C ⥤ Action V G preserves the limit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves limits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves the colimit of some K : J ⥤ C if if it does after postcomposing with the forgetful functor Action V G ⥤ V.

F : C ⥤ Action V G preserves colimits of some shape J if it does after postcomposing with the forgetful functor Action V G ⥤ V.

Equations
Equations
Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Action.neg_hom {V : Type u_1} [CategoryTheory.Category.{u_3, u_1} V] {G : Type u_2} [Monoid G] [CategoryTheory.Preadditive V] {X Y : Action V G} (f : X Y) :
(-f).hom = -f.hom
@[simp]
theorem Action.add_hom {V : Type u_1} [CategoryTheory.Category.{u_3, u_1} V] {G : Type u_2} [Monoid G] [CategoryTheory.Preadditive V] {X Y : Action V G} (f g : X Y) :
(f + g).hom = f.hom + g.hom
@[simp]
theorem Action.sum_hom {V : Type u_1} [CategoryTheory.Category.{u_4, u_1} V] {G : Type u_2} [Monoid G] [CategoryTheory.Preadditive V] {X Y : Action V G} {ι : Type u_3} (f : ι → (X Y)) (s : Finset ι) :
(s.sum f).hom = is, (f i).hom
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Action.smul_hom {V : Type u_1} [CategoryTheory.Category.{u_4, u_1} V] {G : Type u_2} [Monoid G] [CategoryTheory.Preadditive V] {R : Type u_3} [Semiring R] [CategoryTheory.Linear R V] {X Y : Action V G} (r : R) (f : X Y) :
(r f).hom = r f.hom

Auxiliary construction for the Abelian (Action V G) instance.

Equations
Instances For