The center of a category #
Given a category C
, we introduce an abbreviation CatCenter C
for
the center of the category C
, which is End (𝟭 C)
, the
type of endomorphisms of the identity functor of C
.
References #
- https://ncatlab.org/nlab/show/center+of+a+category
@[reducible, inline]
The center of a category C
is the type End (𝟭 C)
of the endomorphisms
of the identify functor of C
.
Equations
Instances For
theorem
CategoryTheory.CatCenter.ext
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(h : ∀ (X : C), x.app X = y.app X)
:
theorem
CategoryTheory.CatCenter.mul_app'
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app'_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (y.app X) (CategoryStruct.comp (x.app X) h)
theorem
CategoryTheory.CatCenter.mul_app
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (x.app X) (CategoryStruct.comp (y.app X) h)