Documentation

Mathlib.CategoryTheory.Center.Basic

The center of a category #

Given a category C, we introduce an abbreviation CatCenter C for the center of the category C, which is End (𝟭 C), the type of endomorphisms of the identity functor of C.

References #

@[reducible, inline]
abbrev CategoryTheory.CatCenter (C : Type u) [Category.{v, u} C] :
Type (max u v)

The center of a category C is the type End (𝟭 C) of the endomorphisms of the identify functor of C.

Equations
Instances For
    theorem CategoryTheory.CatCenter.ext {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (h : ∀ (X : C), x.app X = y.app X) :
    x = y
    theorem CategoryTheory.CatCenter.ext_iff {C : Type u} [Category.{v, u} C] {x y : CatCenter C} :
    x = y ∀ (X : C), x.app X = y.app X
    theorem CategoryTheory.CatCenter.mul_app' {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) :
    (x * y).app X = CategoryStruct.comp (y.app X) (x.app X)
    theorem CategoryTheory.CatCenter.mul_app'_assoc {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) {Z : C} (h : X Z) :
    theorem CategoryTheory.CatCenter.mul_app {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) :
    (x * y).app X = CategoryStruct.comp (x.app X) (y.app X)
    theorem CategoryTheory.CatCenter.mul_app_assoc {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) {Z : C} (h : X Z) :