Documentation

Mathlib.Geometry.Manifold.MFDeriv.NormedSpace

Equivalence of manifold differentiability with the basic definition for functions between #

vector spaces

The API in this file is mostly copied from Mathlib/Geometry/Manifold/ContMDiff/NormedSpace.lean, providing the same statements for higher smoothness. In this file, we do the same for differentiability.

theorem DifferentiableWithinAt.comp_mdifferentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} {s : Set M} {t : Set F} {x : M} (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ F) f s x) (h : Set.MapsTo f s t) :
theorem DifferentiableAt.comp_mdifferentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} {s : Set M} {x : M} (hg : DifferentiableAt π•œ g (f x)) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ F) f s x) :
theorem DifferentiableAt.comp_mdifferentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} {x : M} (hg : DifferentiableAt π•œ g (f x)) (hf : MDifferentiableAt I (modelWithCornersSelf π•œ F) f x) :
theorem Differentiable.comp_mdifferentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} {s : Set M} {x : M} (hg : Differentiable π•œ g) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ F) f s x) :
theorem Differentiable.comp_mdifferentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} {x : M} (hg : Differentiable π•œ g) (hf : MDifferentiableAt I (modelWithCornersSelf π•œ F) f x) :
theorem Differentiable.comp_mdifferentiable {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace π•œ F] {F' : Type u_11} [NormedAddCommGroup F'] [NormedSpace π•œ F'] {g : F β†’ F'} {f : M β†’ F} (hg : Differentiable π•œ g) (hf : MDifferentiable I (modelWithCornersSelf π•œ F) f) :

Linear maps between normed spaces are differentiable #

theorem MDifferentiableWithinAt.clm_precomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {s : Set M} {x : M} (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) f s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ ((Fβ‚‚ β†’L[π•œ] F₃) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.precomp F₃ (f y)) s x
theorem MDifferentiableAt.clm_precomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {x : M} (hf : MDifferentiableAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) f x) :
MDifferentiableAt I (modelWithCornersSelf π•œ ((Fβ‚‚ β†’L[π•œ] F₃) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.precomp F₃ (f y)) x
theorem MDifferentiableOn.clm_precomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {s : Set M} (hf : MDifferentiableOn I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) f s) :
MDifferentiableOn I (modelWithCornersSelf π•œ ((Fβ‚‚ β†’L[π•œ] F₃) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.precomp F₃ (f y)) s
theorem MDifferentiable.clm_precomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ F₁ β†’L[π•œ] Fβ‚‚} (hf : MDifferentiable I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) f) :
MDifferentiable I (modelWithCornersSelf π•œ ((Fβ‚‚ β†’L[π•œ] F₃) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) fun (y : M) => ContinuousLinearMap.precomp F₃ (f y)
theorem MDifferentiableWithinAt.clm_postcomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ Fβ‚‚ β†’L[π•œ] F₃} {s : Set M} {x : M} (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) f s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] Fβ‚‚) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.postcomp F₁ (f y)) s x
theorem MDifferentiableAt.clm_postcomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ Fβ‚‚ β†’L[π•œ] F₃} {x : M} (hf : MDifferentiableAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) f x) :
MDifferentiableAt I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] Fβ‚‚) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.postcomp F₁ (f y)) x
theorem MDifferentiableOn.clm_postcomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ Fβ‚‚ β†’L[π•œ] F₃} {s : Set M} (hf : MDifferentiableOn I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) f s) :
MDifferentiableOn I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] Fβ‚‚) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) (fun (y : M) => ContinuousLinearMap.postcomp F₁ (f y)) s
theorem MDifferentiable.clm_postcomp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {f : M β†’ Fβ‚‚ β†’L[π•œ] F₃} (hf : MDifferentiable I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) f) :
MDifferentiable I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] Fβ‚‚) β†’L[π•œ] F₁ β†’L[π•œ] F₃)) fun (y : M) => ContinuousLinearMap.postcomp F₁ (f y)
theorem MDifferentiableWithinAt.clm_comp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] F₁} {s : Set M} {x : M} (hg : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g s x) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) f s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) (fun (x : M) => (g x).comp (f x)) s x
theorem MDifferentiableAt.clm_comp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] F₁} {x : M} (hg : MDifferentiableAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g x) (hf : MDifferentiableAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) f x) :
MDifferentiableAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) (fun (x : M) => (g x).comp (f x)) x
theorem MDifferentiableOn.clm_comp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] F₁} {s : Set M} (hg : MDifferentiableOn I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g s) (hf : MDifferentiableOn I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) f s) :
MDifferentiableOn I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) (fun (x : M) => (g x).comp (f x)) s
theorem MDifferentiable.clm_comp {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] F₁} (hg : MDifferentiable I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g) (hf : MDifferentiable I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) f) :
MDifferentiable I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₃)) fun (x : M) => (g x).comp (f x)
theorem MDifferentiableWithinAt.clm_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {g : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {f : M β†’ F₁} {s : Set M} {x : M} (hg : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) g s x) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ F₁) f s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ Fβ‚‚) (fun (x : M) => (g x) (f x)) s x

Applying a linear map to a vector is differentiable within a set. Version in vector spaces. For a version in nontrivial vector bundles, see MDifferentiableWithinAt.clm_apply_of_inCoordinates.

theorem MDifferentiableAt.clm_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {g : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {f : M β†’ F₁} {x : M} (hg : MDifferentiableAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) g x) (hf : MDifferentiableAt I (modelWithCornersSelf π•œ F₁) f x) :
MDifferentiableAt I (modelWithCornersSelf π•œ Fβ‚‚) (fun (x : M) => (g x) (f x)) x

Applying a linear map to a vector is differentiable. Version in vector spaces. For a version in nontrivial vector bundles, see MDifferentiableAt.clm_apply_of_inCoordinates.

theorem MDifferentiableOn.clm_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {g : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {f : M β†’ F₁} {s : Set M} (hg : MDifferentiableOn I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) g s) (hf : MDifferentiableOn I (modelWithCornersSelf π•œ F₁) f s) :
MDifferentiableOn I (modelWithCornersSelf π•œ Fβ‚‚) (fun (x : M) => (g x) (f x)) s
theorem MDifferentiable.clm_apply {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {g : M β†’ F₁ β†’L[π•œ] Fβ‚‚} {f : M β†’ F₁} (hg : MDifferentiable I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] Fβ‚‚)) g) (hf : MDifferentiable I (modelWithCornersSelf π•œ F₁) f) :
MDifferentiable I (modelWithCornersSelf π•œ Fβ‚‚) fun (x : M) => (g x) (f x)
theorem MDifferentiableWithinAt.cle_arrowCongr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {f : M β†’ F₁ ≃L[π•œ] Fβ‚‚} {g : M β†’ F₃ ≃L[π•œ] Fβ‚„} {s : Set M} {x : M} (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) (fun (x : M) => ↑(f x).symm) s x) (hg : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₃ β†’L[π•œ] Fβ‚„)) (fun (x : M) => ↑(g x)) s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] F₃) β†’L[π•œ] Fβ‚‚ β†’L[π•œ] Fβ‚„)) (fun (y : M) => ↑((f y).arrowCongr (g y))) s x
theorem MDifferentiableAt.cle_arrowCongr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {f : M β†’ F₁ ≃L[π•œ] Fβ‚‚} {g : M β†’ F₃ ≃L[π•œ] Fβ‚„} {x : M} (hf : MDifferentiableAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) (fun (x : M) => ↑(f x).symm) x) (hg : MDifferentiableAt I (modelWithCornersSelf π•œ (F₃ β†’L[π•œ] Fβ‚„)) (fun (x : M) => ↑(g x)) x) :
MDifferentiableAt I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] F₃) β†’L[π•œ] Fβ‚‚ β†’L[π•œ] Fβ‚„)) (fun (y : M) => ↑((f y).arrowCongr (g y))) x
theorem MDifferentiableOn.cle_arrowCongr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {f : M β†’ F₁ ≃L[π•œ] Fβ‚‚} {g : M β†’ F₃ ≃L[π•œ] Fβ‚„} {s : Set M} (hf : MDifferentiableOn I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) (fun (x : M) => ↑(f x).symm) s) (hg : MDifferentiableOn I (modelWithCornersSelf π•œ (F₃ β†’L[π•œ] Fβ‚„)) (fun (x : M) => ↑(g x)) s) :
MDifferentiableOn I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] F₃) β†’L[π•œ] Fβ‚‚ β†’L[π•œ] Fβ‚„)) (fun (y : M) => ↑((f y).arrowCongr (g y))) s
theorem MDifferentiable.cle_arrowCongr {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {f : M β†’ F₁ ≃L[π•œ] Fβ‚‚} {g : M β†’ F₃ ≃L[π•œ] Fβ‚„} (hf : MDifferentiable I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] F₁)) fun (x : M) => ↑(f x).symm) (hg : MDifferentiable I (modelWithCornersSelf π•œ (F₃ β†’L[π•œ] Fβ‚„)) fun (x : M) => ↑(g x)) :
MDifferentiable I (modelWithCornersSelf π•œ ((F₁ β†’L[π•œ] F₃) β†’L[π•œ] Fβ‚‚ β†’L[π•œ] Fβ‚„)) fun (y : M) => ↑((f y).arrowCongr (g y))
theorem MDifferentiableWithinAt.clm_prodMap {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] Fβ‚„} {s : Set M} {x : M} (hg : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g s x) (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] Fβ‚„)) f s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ (F₁ Γ— Fβ‚‚ β†’L[π•œ] F₃ Γ— Fβ‚„)) (fun (x : M) => (g x).prodMap (f x)) s x
theorem MDifferentiableAt.clm_prodMap {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] Fβ‚„} {x : M} (hg : MDifferentiableAt I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g x) (hf : MDifferentiableAt I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] Fβ‚„)) f x) :
MDifferentiableAt I (modelWithCornersSelf π•œ (F₁ Γ— Fβ‚‚ β†’L[π•œ] F₃ Γ— Fβ‚„)) (fun (x : M) => (g x).prodMap (f x)) x
theorem MDifferentiableOn.clm_prodMap {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] Fβ‚„} {s : Set M} (hg : MDifferentiableOn I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g s) (hf : MDifferentiableOn I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] Fβ‚„)) f s) :
MDifferentiableOn I (modelWithCornersSelf π•œ (F₁ Γ— Fβ‚‚ β†’L[π•œ] F₃ Γ— Fβ‚„)) (fun (x : M) => (g x).prodMap (f x)) s
theorem MDifferentiable.clm_prodMap {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {F₁ : Type u_14} [NormedAddCommGroup F₁] [NormedSpace π•œ F₁] {Fβ‚‚ : Type u_15} [NormedAddCommGroup Fβ‚‚] [NormedSpace π•œ Fβ‚‚] {F₃ : Type u_16} [NormedAddCommGroup F₃] [NormedSpace π•œ F₃] {Fβ‚„ : Type u_17} [NormedAddCommGroup Fβ‚„] [NormedSpace π•œ Fβ‚„] {g : M β†’ F₁ β†’L[π•œ] F₃} {f : M β†’ Fβ‚‚ β†’L[π•œ] Fβ‚„} (hg : MDifferentiable I (modelWithCornersSelf π•œ (F₁ β†’L[π•œ] F₃)) g) (hf : MDifferentiable I (modelWithCornersSelf π•œ (Fβ‚‚ β†’L[π•œ] Fβ‚„)) f) :
MDifferentiable I (modelWithCornersSelf π•œ (F₁ Γ— Fβ‚‚ β†’L[π•œ] F₃ Γ— Fβ‚„)) fun (x : M) => (g x).prodMap (f x)

Differentiability of scalar multiplication #

theorem MDifferentiableWithinAt.smul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V : Type u_18} [NormedAddCommGroup V] [NormedSpace π•œ V] {f : M β†’ π•œ} {g : M β†’ V} (hf : MDifferentiableWithinAt I (modelWithCornersSelf π•œ π•œ) f s x) (hg : MDifferentiableWithinAt I (modelWithCornersSelf π•œ V) g s x) :
MDifferentiableWithinAt I (modelWithCornersSelf π•œ V) (fun (p : M) => f p β€’ g p) s x
theorem MDifferentiableAt.smul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V : Type u_18} [NormedAddCommGroup V] [NormedSpace π•œ V] {f : M β†’ π•œ} {g : M β†’ V} (hf : MDifferentiableAt I (modelWithCornersSelf π•œ π•œ) f x) (hg : MDifferentiableAt I (modelWithCornersSelf π•œ V) g x) :
MDifferentiableAt I (modelWithCornersSelf π•œ V) (fun (p : M) => f p β€’ g p) x
theorem MDifferentiableOn.smul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {V : Type u_18} [NormedAddCommGroup V] [NormedSpace π•œ V] {f : M β†’ π•œ} {g : M β†’ V} (hf : MDifferentiableOn I (modelWithCornersSelf π•œ π•œ) f s) (hg : MDifferentiableOn I (modelWithCornersSelf π•œ V) g s) :
MDifferentiableOn I (modelWithCornersSelf π•œ V) (fun (p : M) => f p β€’ g p) s
theorem MDifferentiable.smul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {V : Type u_18} [NormedAddCommGroup V] [NormedSpace π•œ V] {f : M β†’ π•œ} {g : M β†’ V} (hf : MDifferentiable I (modelWithCornersSelf π•œ π•œ) f) (hg : MDifferentiable I (modelWithCornersSelf π•œ V) g) :
MDifferentiable I (modelWithCornersSelf π•œ V) fun (p : M) => f p β€’ g p