Documentation

Mathlib.LinearAlgebra.Matrix.Ideal

Ideals in a matrix ring #

This file defines left (resp. two-sided) ideals in a matrix semiring (resp. ring) over left (resp. two-sided) ideals in the base semiring (resp. ring). We also characterize Jacobson radicals of ideals in such rings.

Main results #

Left ideals in a matrix semiring #

def Ideal.matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) :
Ideal (Matrix n n R)

The left ideal of matrices with entries in I ≤ R.

Equations
Instances For
    @[simp]
    theorem Ideal.mem_matricesOver {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) (M : Matrix n n R) :
    M matricesOver n I ∀ (i j : n), M i j I
    @[simp]
    theorem Ideal.matricesOver_bot {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] :
    @[simp]
    theorem Ideal.matricesOver_top {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] :

    Jacobson radicals of left ideals in a matrix ring #

    theorem Ideal.stdBasisMatrix_mem_jacobson_matricesOver {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : Ideal R) (x : R) :
    x I.jacobson∀ (i j : n), Matrix.stdBasisMatrix i j x (matricesOver n I).jacobson

    A standard basis matrix is in $J(Mₙ(I))$ as long as its one possibly non-zero entry is in $J(I)$.

    For any left ideal $I ≤ R$, we have $Mₙ(J(I)) ≤ J(Mₙ(I))$.

    Two-sided ideals in a matrix ring #

    def RingCon.matrix {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] (c : RingCon R) :
    RingCon (Matrix n n R)

    The ring congruence of matrices with entries related by c.

    Equations
    • RingCon.matrix n c = { r := fun (M N : Matrix n n R) => ∀ (i j : n), c (M i j) (N i j), iseqv := , mul' := , add' := }
    Instances For
      @[simp]
      theorem RingCon.matrix_apply {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] {c : RingCon R} {M N : Matrix n n R} :
      (matrix n c) M N ∀ (i j : n), c (M i j) (N i j)
      @[simp]
      theorem RingCon.matrix_apply_stdBasisMatrix {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon R} {i j : n} {x y : R} :
      @[simp]
      @[simp]
      def RingCon.ofMatrix {R : Type u_1} {n : Type u_2} [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] (c : RingCon (Matrix n n R)) :

      The congruence relation induced by c on stdBasisMatrix i j.

      Equations
      Instances For
        @[simp]
        theorem RingCon.ofMatrix_rel {R : Type u_1} {n : Type u_2} [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} {x y : R} :
        c.ofMatrix x y ∀ (i j : n), c (Matrix.stdBasisMatrix i j x) (Matrix.stdBasisMatrix i j y)
        @[simp]
        theorem RingCon.ofMatrix_matrix {R : Type u_1} {n : Type u_2} [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] [Nonempty n] (c : RingCon R) :
        (matrix n c).ofMatrix = c
        @[simp]
        theorem RingCon.matrix_ofMatrix {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] (c : RingCon (Matrix n n R)) :

        Note that this does not apply to a non-unital ring, with counterexample where the elementwise congruence relation !![⊤,⊤;⊤,(· ≡ · [PMOD 4])] is a ring congruence over Matrix (Fin 2) (Fin 2) 2ℤ.

        theorem RingCon.ofMatrix_rel' {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} {x y : R} (i j : n) :

        A version of ofMatrix_rel for a single matrix index, rather than all indices.

        theorem RingCon.coe_ofMatrix_eq_relationMap {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} (i j : n) :
        c.ofMatrix = Relation.Map (⇑c) (fun (x : Matrix n n R) => x i j) fun (x : Matrix n n R) => x i j

        The two-sided ideal of matrices with entries in I ≤ R.

        Equations
        Instances For
          @[simp]
          theorem TwoSidedIdeal.mem_matricesOver {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocRing R] [Fintype n] (I : TwoSidedIdeal R) (M : Matrix n n R) :
          M matricesOver n I ∀ (i j : n), M i j I

          Two-sided ideals in $R$ correspond bijectively to those in $Mₙ(R)$. Given an ideal $I ≤ R$, we send it to $Mₙ(I)$. Given an ideal $J ≤ Mₙ(R)$, we send it to $\{Nᵢⱼ ∣ ∃ N ∈ J\}$.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem TwoSidedIdeal.coe_equivMatricesOver_symm_apply {R : Type u_1} {n : Type u_2} [NonAssocRing R] [Fintype n] [Nonempty n] [DecidableEq n] (I : TwoSidedIdeal (Matrix n n R)) (i j : n) :
            (equivMatricesOver.symm I) = {x : R | NI, N i j = x}

            Two-sided ideals in $R$ are order-isomorphic with those in $Mₙ(R)$. See also equivMatricesOver.

            Equations
            Instances For
              @[simp]
              theorem TwoSidedIdeal.orderIsoMatricesOver_apply_ringCon_r {R : Type u_1} {n : Type u_2} [NonAssocRing R] [Fintype n] [Nonempty n] [DecidableEq n] (I : TwoSidedIdeal R) (M N : Matrix n n R) :
              (orderIsoMatricesOver I).ringCon.toSetoid M N = ∀ (i j : n), I.ringCon (M i j) (N i j)

              Jacobson radicals of two-sided ideals in a matrix ring #

              For any two-sided ideal $I ≤ R$, we have $J(Mₙ(I)) = Mₙ(J(I))$.