Documentation

Mathlib.LinearAlgebra.Matrix.Nondegenerate

Matrices associated with non-degenerate bilinear forms #

Main definitions #

def Matrix.SeparatingRight {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Finite m] [Finite n] (M : Matrix m n R) :

A matrix M is right-separating if for all w ≠ 0, there is a v with v * M * w ≠ 0.

Equations
Instances For
    def Matrix.SeparatingLeft {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Finite m] [Finite n] (M : Matrix m n R) :

    A matrix M is right-separating if for all v ≠ 0, there is a w with v * M * w ≠ 0.

    Equations
    Instances For
      structure Matrix.Nondegenerate {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Finite m] [Finite n] (M : Matrix m n R) :

      A matrix M is nondegenerate if it is both left-separating and right-separating.

      Instances For
        theorem Matrix.separatingRight_def {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} :
        M.SeparatingRight ∀ (w : nR), (∀ (v : mR), v ⬝ᵥ M.mulVec w = 0)w = 0
        theorem Matrix.separatingLeft_def {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} :
        M.SeparatingLeft ∀ (v : mR), (∀ (w : nR), v ⬝ᵥ M.mulVec w = 0)v = 0
        theorem Matrix.nondegenerate_def {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} :
        M.Nondegenerate (∀ (v : mR), (∀ (w : nR), v ⬝ᵥ M.mulVec w = 0)v = 0) ∀ (w : nR), (∀ (v : mR), v ⬝ᵥ M.mulVec w = 0)w = 0
        theorem Matrix.Nondegenerate.eq_zero_of_ortho {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} (hM : M.Nondegenerate) {v : mR} (hv : ∀ (w : nR), v ⬝ᵥ M.mulVec w = 0) :
        v = 0

        If M is nondegenerate and w * M * v = 0 for all w, then v = 0.

        theorem Matrix.Nondegenerate.exists_not_ortho_of_ne_zero {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} (hM : M.Nondegenerate) {v : mR} (hv : v 0) :
        ∃ (w : nR), v ⬝ᵥ M.mulVec w 0

        If M is nondegenerate and v ≠ 0, then there is some w such that w * M * v ≠ 0.

        theorem Matrix.Nondegenerate.eq_zero_of_ortho' {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} (hM : M.Nondegenerate) {w : nR} (hw : ∀ (v : mR), v ⬝ᵥ M.mulVec w = 0) :
        w = 0

        If M is nondegenerate and w * M * v = 0 for all v, then w = 0.

        theorem Matrix.Nondegenerate.exists_not_ortho_of_ne_zero' {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] [Fintype m] [Fintype n] {M : Matrix m n R} (hM : M.Nondegenerate) {w : nR} (hw : w 0) :
        ∃ (v : mR), v ⬝ᵥ M.mulVec w 0

        If M is nondegenerate and w ≠ 0, then there is some v such that v * M * w ≠ 0.

        theorem Matrix.nondegenerate_of_det_ne_zero {m : Type u_1} {A : Type u_4} [Fintype m] [CommRing A] [IsDomain A] [DecidableEq m] {M : Matrix m m A} (hM : M.det 0) :

        If M is square and has nonzero determinant, then M as a bilinear form on n → A is nondegenerate. The "iff" implication, nondegenerate_iff_det_ne_zero, is proved in a later file.

        See also BilinForm.nondegenerateOfDetNeZero' and BilinForm.nondegenerateOfDetNeZero.

        theorem Matrix.eq_zero_of_vecMul_eq_zero {m : Type u_1} {A : Type u_4} [Fintype m] [CommRing A] [IsDomain A] [DecidableEq m] {M : Matrix m m A} (hM : M.det 0) {v : mA} (hv : vecMul v M = 0) :
        v = 0
        theorem Matrix.eq_zero_of_mulVec_eq_zero {m : Type u_1} {A : Type u_4} [Fintype m] [CommRing A] [IsDomain A] [DecidableEq m] {M : Matrix m m A} (hM : M.det 0) {v : mA} (hv : M.mulVec v = 0) :
        v = 0