Documentation

Mathlib.NumberTheory.FactorisationProperties

Factorisation properties of natural numbers #

This file defines abundant, pseudoperfect, deficient, and weird numbers and formalizes their relations with prime and perfect numbers.

Main Definitions #

Main Results #

Implementation Notes #

References #

Tags #

abundant, deficient, weird, pseudoperfect

def Nat.Abundant (n : ) :

n : ℕ is abundant if the sum of the proper divisors of n is greater than n.

Equations
Instances For

    n : ℕ is deficient if the sum of the proper divisors of n is less than n.

    Equations
    Instances For

      A positive natural number n is pseudoperfect if there exists a subset of the proper divisors of n such that the sum of that subset is equal to n.

      Equations
      Instances For
        def Nat.Weird (n : ) :

        n : ℕ is a weird number if and only if it is abundant but not pseudoperfect.

        Equations
        Instances For

          abundancyIndex n is the sum of the divisors of n divided by n.

          Equations
          Instances For
            theorem Nat.not_pseudoperfect_iff_forall {n : } :
            ¬n.Pseudoperfect n = 0 sn.properDivisors, is, i n

            A positive natural number is either deficient, perfect, or abundant

            theorem Nat.Prime.not_weird {n : } (h : Prime n) :
            theorem Nat.Prime.deficient_pow {n m : } (h : Prime n) :
            (n ^ m).Deficient

            Any natural number power of a prime is deficient

            theorem Nat.Prime.deficient {n : } (h : Prime n) :

            There exists infinitely many deficient numbers

            theorem Nat.abundant_iff_sum_divisors {n : } :
            n.Abundant 2 * n < in.divisors, i
            theorem Nat.Abundant.of_dvd {n m : } (h : m.Abundant) (hd : m n) (hn : n 0) :
            theorem Nat.Abundant.mul_left {n m : } (h : n.Abundant) (hm : m 0) :
            (m * n).Abundant