Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.E2.Summable

Summability of E2 #

We collect here lemmas about the summability of the Eisenstein series E2 that will be used to prove how it transforms under the slash action.

Main Results #

The key results concern the difference between two different orders of summation for the telescoping series ∑_{m,n} (1/(mz + n) - 1/(mz + n + 1)):

  1. tsum_symmetricIco_tsum_sub_eq: Summing first over n (in symmetric intervals), then m: ∑'[symmetricIco] n : ℤ, ∑' m : ℤ, (1/(mz+n) - 1/(mz+n+1)) = -2πi/z

  2. tsum_tsum_symmetricIco_sub_eq: Summing first over m, then n (in symmetric intervals): ∑' m : ℤ, ∑'[symmetricIco] n : ℤ, (1/(mz+n) - 1/(mz+n+1)) = 0

The difference -2πi/z between these two orderings is precisely the correction term D2 that appears in the transformation formula for G2 under the action of S.

Proof Strategy #

  1. For fixed m ≠ 0, the inner sum over n telescopes to zero (each term cancels with its neighbor), establishing the first identity.

  2. For fixed n, the inner sum over m can be computed using the cotangent series expansion. As n → ±∞ in symmetric intervals, these sums contribute -2πi/z.

theorem EisensteinSeries.summable_left_one_div_linear_sub_one_div_linear (z : UpperHalfPlane) (a b : ) :
Summable fun (m : ) => 1 / (m * z + a) - 1 / (m * z + b)
theorem EisensteinSeries.summable_right_one_div_linear_sub_one_div_linear_succ (z : UpperHalfPlane) (m : ) :
Summable fun (b : ) => 1 / (m * z + b) - 1 / (m * z + b + 1)
theorem EisensteinSeries.tendsto_double_sum_S_act (z : UpperHalfPlane) :
Filter.Tendsto (fun (N : ) => ∑' (n : ), mFinset.Ico (-N) N, 1 / (n * z + m) ^ 2) Filter.atTop (nhds ((z ^ 2)⁻¹ * G2 (ModularGroup.S z)))
theorem EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq (z : UpperHalfPlane) :
Filter.Tendsto (fun (N : ℕ+) => nFinset.Ico (-N) N, ∑' (m : ), (1 / (m * z + n) - 1 / (m * z + n + 1))) Filter.atTop (nhds (-2 * Real.pi * Complex.I / z))
theorem EisensteinSeries.tsum_symmetricIco_tsum_sub_eq (z : UpperHalfPlane) :
∑'[SummationFilter.symmetricIco ] (n : ), ∑' (m : ), (1 / (m * z + n) - 1 / (m * z + n + 1)) = -2 * Real.pi * Complex.I / z
theorem EisensteinSeries.tsum_tsum_symmetricIco_sub_eq (z : UpperHalfPlane) :
∑' (m : ), ∑'[SummationFilter.symmetricIco ] (n : ), (1 / (m * z + n) - 1 / (m * z + n + 1)) = 0