Intervals Ixx (f x) (f (Order.succ x)) #
In this file we prove
Monotone.biUnion_Ico_Ioc_map_succ: ifαis a linear archimedean succ order andβis a linear order, then for any monotone functionfandm n : α, the union of intervalsSet.Ioc (f i) (f (Order.succ i)),m ≤ i < n, is equal toSet.Ioc (f m) (f n);Monotone.pairwise_disjoint_on_Ioc_succ: ifαis a linear succ order,βis a preorder, andf : α → βis a monotone function, then the intervalsSet.Ioc (f n) (f (Order.succ n))are pairwise disjoint.
For the latter lemma, we also prove various order dual versions.
Union formula for Set.Ico (f i) (f (Order.succ i)) over i ∈ Ici a. See also
iUnion_Ico_map_succ_eq_Ici for the specialization a = ⊥.
Union formula for Set.Ioc (f i) (f (Order.succ i)) over i ∈ Ici a. See also
iUnion_Ioc_map_succ_eq_Ioi for the specialization a = ⊥.
Special case a = ⊥ of biUnion_Ici_Ico_map_succ.
Special case a = ⊥ of biUnion_Ici_Ioc_map_succ.
If α is a linear archimedean succ order and β is a linear order, then for any monotone
function f and m n : α, the union of intervals Set.Ioc (f i) (f (Order.succ i)), m ≤ i < n,
is equal to Set.Ioc (f m) (f n)
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioc (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ico (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioo (f n) (f (Order.succ n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioc (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ico (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is a monotone function, then
the intervals Set.Ioo (f Order.pred n) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioc (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ico (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear succ order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioo (f (Order.succ n)) (f n) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioc (f n) (f (Order.pred n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ico (f n) (f (Order.pred n)) are pairwise disjoint.
If α is a linear pred order, β is a preorder, and f : α → β is an antitone function, then
the intervals Set.Ioo (f n) (f (Order.pred n)) are pairwise disjoint.