Principal upper/lower sets #
The results in this file all assume that the underlying type is equipped with at least a preorder.
Main declarations #
UpperSet.Ici
: Principal upper set.Set.Ici
as an upper set.UpperSet.Ioi
: Strict principal upper set.Set.Ioi
as an upper set.LowerSet.Iic
: Principal lower set.Set.Iic
as a lower set.LowerSet.Iio
: Strict principal lower set.Set.Iio
as a lower set.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
UpperSet.Ici_iSup₂
{α : Type u_1}
{ι : Sort u_3}
{κ : ι → Sort u_4}
[CompleteLattice α]
(f : (i : ι) → κ i → α)
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
LowerSet.Iic_iInf₂
{α : Type u_1}
{ι : Sort u_3}
{κ : ι → Sort u_4}
[CompleteLattice α]
(f : (i : ι) → κ i → α)
: