Documentation

Mathlib.Probability.Distributions.Gaussian.HasGaussianLaw.Basic

Gaussian random variables #

In this file we prove basic properties of Gaussian random variables.

Implementation note #

Many lemmas are duplicated with an expanded form of some function. For instance there is HasGaussianLaw.add and HasGaussianLaw.fun_add. The reason is that if someone wants for instance to rewrite using HasGaussianLaw.charFunDual_map_eq and provide the proof of HasGaussianLaw directly through dot notation, the lemma used must syntactically correspond to the random variable.

Tags #

Gaussian random variable

theorem ProbabilityTheory.HasGaussianLaw.congr {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] {X Y : ΩE} (hX : HasGaussianLaw X P) (h : X =ᵐ[P] Y) :
theorem ProbabilityTheory.HasLaw.hasGaussianLaw {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] {mE : MeasurableSpace E} {X : ΩE} {μ : MeasureTheory.Measure E} (hX : HasLaw X μ P) [IsGaussian μ] :
theorem ProbabilityTheory.HasGaussianLaw.charFun_map_eq {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [InnerProductSpace E] (t : E) (hX : HasGaussianLaw X P) :
MeasureTheory.charFun (MeasureTheory.Measure.map X P) t = Complex.exp (( (x : Ω), (fun (ω : Ω) => inner t (X ω)) x P) * Complex.I - (variance (fun (ω : Ω) => inner t (X ω)) P) / 2)
theorem ProbabilityTheory.hasGaussianLaw_iff_charFun_map_eq {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [CompleteSpace E] [InnerProductSpace E] [MeasureTheory.IsFiniteMeasure P] (hX : AEMeasurable X P) :
HasGaussianLaw X P ∀ (t : E), MeasureTheory.charFun (MeasureTheory.Measure.map X P) t = Complex.exp (( (x : Ω), (fun (ω : Ω) => inner t (X ω)) x P) * Complex.I - (variance (fun (ω : Ω) => inner t (X ω)) P) / 2)
theorem ProbabilityTheory.HasGaussianLaw.charFunDual_map_eq_fun {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] (L : StrongDual E) (hX : HasGaussianLaw X P) :
MeasureTheory.charFunDual (MeasureTheory.Measure.map X P) L = Complex.exp (( (ω : Ω), L (X ω) P) * Complex.I - (variance (fun (ω : Ω) => L (X ω)) P) / 2)

A Gaussian random variable has moments of all orders.

theorem ProbabilityTheory.HasGaussianLaw.map_fun {Ω : Type u_1} {E : Type u_2} {F : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (hX : HasGaussianLaw X P) (L : E →L[] F) :
HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
theorem ProbabilityTheory.HasGaussianLaw.map_equiv_fun {Ω : Type u_1} {E : Type u_2} {F : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (hX : HasGaussianLaw X P) (L : E ≃L[] F) :
HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
theorem ProbabilityTheory.HasGaussianLaw.smul {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] (c : ) (hX : HasGaussianLaw X P) :
theorem ProbabilityTheory.HasGaussianLaw.fun_smul {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] (c : ) (hX : HasGaussianLaw X P) :
HasGaussianLaw (fun (ω : Ω) => c X ω) P
theorem ProbabilityTheory.HasGaussianLaw.fun_neg {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] (hX : HasGaussianLaw X P) :
HasGaussianLaw (fun (ω : Ω) => -X ω) P
theorem ProbabilityTheory.HasGaussianLaw.toLp_prodMk {Ω : Type u_1} {E : Type u_2} {F : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] {Y : ΩF} [SecondCountableTopologyEither E F] (p : ENNReal) [Fact (1 p)] (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
HasGaussianLaw (fun (ω : Ω) => WithLp.toLp p (X ω, Y ω)) P
theorem ProbabilityTheory.HasGaussianLaw.fst {Ω : Type u_1} {E : Type u_2} {F : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] {Y : ΩF} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
theorem ProbabilityTheory.HasGaussianLaw.snd {Ω : Type u_1} {E : Type u_2} {F : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] {X : ΩE} [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] {Y : ΩF} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
theorem ProbabilityTheory.HasGaussianLaw.add {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [SecondCountableTopology E] {Y : ΩE} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
theorem ProbabilityTheory.HasGaussianLaw.fun_add {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [SecondCountableTopology E] {Y : ΩE} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
HasGaussianLaw (fun (ω : Ω) => X ω + Y ω) P
theorem ProbabilityTheory.HasGaussianLaw.sub {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [SecondCountableTopology E] {Y : ΩE} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
theorem ProbabilityTheory.HasGaussianLaw.fun_sub {Ω : Type u_1} {E : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] {X : ΩE} [NormedSpace E] [SecondCountableTopology E] {Y : ΩE} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) :
HasGaussianLaw (fun (ω : Ω) => X ω - Y ω) P
theorem ProbabilityTheory.HasGaussianLaw.eval {Ω : Type u_1} {ι : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] {X : (i : ι) → ΩE i} (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) (i : ι) :
theorem ProbabilityTheory.HasGaussianLaw.prodMk {Ω : Type u_1} {ι : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] {X : (i : ι) → ΩE i} [∀ (i : ι), SecondCountableTopology (E i)] [Finite ι] (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) (i j : ι) :
HasGaussianLaw (fun (ω : Ω) => (X i ω, X j ω)) P
theorem ProbabilityTheory.HasGaussianLaw.toLp_pi {Ω : Type u_1} {ι : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] {X : (i : ι) → ΩE i} [∀ (i : ι), SecondCountableTopology (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) :
HasGaussianLaw (fun (ω : Ω) => WithLp.toLp p fun (x : ι) => X x ω) P
theorem ProbabilityTheory.HasGaussianLaw.sum {Ω : Type u_1} {ι : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Fintype ι] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {X : ιΩE} (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) :
HasGaussianLaw (∑ i : ι, X i) P
theorem ProbabilityTheory.HasGaussianLaw.fun_sum {Ω : Type u_1} {ι : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Fintype ι] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {X : ιΩE} (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) :
HasGaussianLaw (fun (ω : Ω) => i : ι, X i ω) P