Long exact sequence in group cohomology #
Given a commutative ring k and a group G, this file shows that a short exact sequence of
k-linear G-representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 induces a short exact sequence of
complexes
0 ⟶ inhomogeneousCochains X₁ ⟶ inhomogeneousCochains X₂ ⟶ inhomogeneousCochains X₃ ⟶ 0.
Since the cohomology of inhomogeneousCochains Xᵢ is the group cohomology of Xᵢ, this allows us
to specialize API about long exact sequences to group cohomology.
Main definitions #
groupCohomology.δ hX i j hij: the connecting homomorphismHⁱ(G, X₃) ⟶ Hʲ(G, X₁)associated to an exact sequence0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0of representations.
The short complex Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂) associated to an exact
sequence of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.
Equations
- groupCohomology.mapShortComplex₁ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₂'
Instances For
The short complex Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) associated to a short complex of
representations X₁ ⟶ X₂ ⟶ X₃.
Equations
- groupCohomology.mapShortComplex₂ X i = X.map (groupCohomology.functor k G i)
Instances For
The short complex Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁).
Equations
- groupCohomology.mapShortComplex₃ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₁'
Instances For
Exactness of Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂).
Exactness of Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃).
Exactness of Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁).
The connecting homomorphism Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) associated to an exact sequence
0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 of representations.
Equations
- groupCohomology.δ hX i j hij = ⋯.δ i j hij
Instances For
Given an exact sequence of G-representations 0 ⟶ X₁ ⟶f X₂ ⟶g X₃ ⟶ 0, this expresses an
n + 1-cochain x : Gⁿ⁺¹ → X₁ such that f ∘ x ∈ Bⁿ⁺¹(G, X₂) as a cocycle.
Stated for readability of δ_apply.
Equations
Instances For
Stated for readability of δ₀_apply.
Alias of groupCohomology.mem_cocycles₁_of_comp_eq_d₀₁.
Stated for readability of δ₀_apply.
Stated for readability of δ₁_apply.
Alias of groupCohomology.mem_cocycles₂_of_comp_eq_d₁₂.
Stated for readability of δ₁_apply.