Long exact sequence in group homology #
Given a commutative ring k and a group G, this file shows that a short exact sequence of
k-linear G-representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 induces a short exact sequence of
complexes
0 ⟶ inhomogeneousChains X₁ ⟶ inhomogeneousChains X₂ ⟶ inhomogeneousChains X₃ ⟶ 0.
Since the homology of inhomogeneousChains Xᵢ is the group homology of Xᵢ, this allows us
to specialize API about long exact sequences to group homology.
Main definitions #
groupHomology.δ hX i j hij: the connecting homomorphismHᵢ(G, X₃) ⟶ Hⱼ(G, X₁)associated to an exact sequence0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0of representations.
The short complex Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) ⟶ Hⱼ(G, X₂) associated to an exact sequence
of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.
Equations
- groupHomology.mapShortComplex₁ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₂'
Instances For
The short complex Hᵢ(G, X₁) ⟶ Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) associated to a short complex of
representations X₁ ⟶ X₂ ⟶ X₃.
Equations
- groupHomology.mapShortComplex₂ X i = X.map (groupHomology.functor k G i)
Instances For
The short complex Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) associated to an exact sequence of
representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.
Equations
- groupHomology.mapShortComplex₃ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₁'
Instances For
Exactness of Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) ⟶ Hⱼ(G, X₂).
Exactness of Hᵢ(G, X₁) ⟶ Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃).
Exactness of Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁).
The connecting homomorphism Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) associated to an exact sequence
0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 of representations.
Equations
- groupHomology.δ hX i j hij = ⋯.δ i j hij
Instances For
Given an exact sequence of G-representations 0 ⟶ X₁ ⟶f X₂ ⟶g X₃ ⟶ 0, this expresses an
n-chain x : Gⁿ →₀ X₁ such that f ∘ x ∈ Bₙ(G, X₂) as a cycle. Stated for readability of
δ_apply.
Equations
- groupHomology.cyclesMkOfCompEqD hX hx = groupHomology.cyclesMk j ((ComplexShape.down ℕ).next j) ⋯ x ⋯
Instances For
Stated for readability of δ₁_apply.