Documentation

Mathlib.RingTheory.Bialgebra.MonoidAlgebra

The bialgebra structure on monoid algebras #

Given a monoid M, a commutative semiring R and an R-bialgebra A, this file collects results about the R-bialgebra instance on A[M] inherited from the corresponding structure on its coefficients, building upon results in Mathlib/RingTheory/Coalgebra/MonoidAlgebra.lean about the coalgebra structure.

Main definitions #

noncomputable instance MonoidAlgebra.instBialgebra (R : Type u_1) (A : Type u_2) (M : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] :
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def MonoidAlgebra.mapDomainBialgHom (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [Monoid M] [Monoid N] (f : M →* N) :

If f : M → N is a monoid hom, then MonoidAlgebra.mapDomain f is a bialgebra hom between their monoid algebras.

Equations
Instances For
    @[simp]
    theorem MonoidAlgebra.mapDomainBialgHom_apply (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [Monoid M] [Monoid N] (f : M →* N) (a✝ : MonoidAlgebra R M) :
    (mapDomainBialgHom R f) a✝ = Finsupp.mapDomain (⇑f) a✝
    @[simp]
    theorem MonoidAlgebra.mapDomainBialgHom_comp {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [Monoid M] [Monoid N] [Monoid O] (f : N →* O) (g : M →* N) :
    theorem MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [Monoid M] [Monoid N] [Monoid O] (f : N →* O) (g : M →* N) (x : MonoidAlgebra R M) :
    noncomputable instance AddMonoidAlgebra.instBialgebra (R : Type u_1) (A : Type u_2) (M : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] :
    Equations
    • One or more equations did not get rendered due to their size.
    noncomputable def AddMonoidAlgebra.mapDomainBialgHom (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddMonoid M] [AddMonoid N] (f : M →+ N) :

    If f : M → N is a monoid hom, then AddMonoidAlgebra.mapDomain f is a bialgebra hom between their monoid algebras.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AddMonoidAlgebra.mapDomainBialgHom_apply (R : Type u_1) {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddMonoid M] [AddMonoid N] (f : M →+ N) (a✝ : AddMonoidAlgebra R M) :
      (mapDomainBialgHom R f) a✝ = (↑(mapDomainAlgHom R R f).toRingHom).toFun a✝
      @[simp]
      theorem AddMonoidAlgebra.mapDomainBialgHom_comp {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [AddMonoid M] [AddMonoid N] [AddMonoid O] (f : N →+ O) (g : M →+ N) :
      theorem AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom {R : Type u_1} {M : Type u_3} {N : Type u_4} {O : Type u_5} [CommSemiring R] [AddMonoid M] [AddMonoid N] [AddMonoid O] (f : N →+ O) (g : M →+ N) (x : AddMonoidAlgebra R M) :
      @[simp]
      theorem LaurentPolynomial.comul_T {R : Type u_6} [CommSemiring R] {A : Type u_7} [Semiring A] [Bialgebra R A] (n : ) :
      @[simp]
      theorem LaurentPolynomial.counit_T {R : Type u_6} [CommSemiring R] {A : Type u_7} [Semiring A] [Bialgebra R A] (n : ) :