The bialgebra structure on monoid algebras #
Given a monoid M
, a commutative semiring R
and an R
-bialgebra A
, this file collects results
about the R
-bialgebra instance on A[M]
inherited from the corresponding structure on its
coefficients, building upon results in Mathlib/RingTheory/Coalgebra/MonoidAlgebra.lean
about the
coalgebra structure.
Main definitions #
(Add)MonoidAlgebra.instBialgebra
: theR
-bialgebra structure onA[M]
whenM
is an (add) monoid andA
is anR
-bialgebra.LaurentPolynomial.instBialgebra
: theR
-bialgebra structure on the Laurent polynomialsA[T;T⁻¹]
whenA
is anR
-bialgebra.
noncomputable instance
MonoidAlgebra.instBialgebra
(R : Type u_1)
(A : Type u_2)
(M : Type u_3)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
[Monoid M]
:
Bialgebra R (MonoidAlgebra A M)
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
MonoidAlgebra.mapDomainBialgHom
(R : Type u_1)
{M : Type u_3}
{N : Type u_4}
[CommSemiring R]
[Monoid M]
[Monoid N]
(f : M →* N)
:
If f : M → N
is a monoid hom, then MonoidAlgebra.mapDomain f
is a bialgebra hom between
their monoid algebras.
Equations
Instances For
@[simp]
theorem
MonoidAlgebra.mapDomainBialgHom_apply
(R : Type u_1)
{M : Type u_3}
{N : Type u_4}
[CommSemiring R]
[Monoid M]
[Monoid N]
(f : M →* N)
(a✝ : MonoidAlgebra R M)
:
@[simp]
theorem
MonoidAlgebra.mapDomainBialgHom_id
{R : Type u_1}
{M : Type u_3}
[CommSemiring R]
[Monoid M]
:
theorem
MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
{O : Type u_5}
[CommSemiring R]
[Monoid M]
[Monoid N]
[Monoid O]
(f : N →* O)
(g : M →* N)
(x : MonoidAlgebra R M)
:
noncomputable instance
AddMonoidAlgebra.instBialgebra
(R : Type u_1)
(A : Type u_2)
(M : Type u_3)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
[AddMonoid M]
:
Bialgebra R (AddMonoidAlgebra A M)
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
AddMonoidAlgebra.mapDomainBialgHom
(R : Type u_1)
{M : Type u_3}
{N : Type u_4}
[CommSemiring R]
[AddMonoid M]
[AddMonoid N]
(f : M →+ N)
:
If f : M → N
is a monoid hom, then AddMonoidAlgebra.mapDomain f
is a bialgebra hom between
their monoid algebras.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddMonoidAlgebra.mapDomainBialgHom_apply
(R : Type u_1)
{M : Type u_3}
{N : Type u_4}
[CommSemiring R]
[AddMonoid M]
[AddMonoid N]
(f : M →+ N)
(a✝ : AddMonoidAlgebra R M)
:
@[simp]
theorem
AddMonoidAlgebra.mapDomainBialgHom_id
{R : Type u_1}
{M : Type u_3}
[CommSemiring R]
[AddMonoid M]
:
theorem
AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom
{R : Type u_1}
{M : Type u_3}
{N : Type u_4}
{O : Type u_5}
[CommSemiring R]
[AddMonoid M]
[AddMonoid N]
[AddMonoid O]
(f : N →+ O)
(g : M →+ N)
(x : AddMonoidAlgebra R M)
:
noncomputable instance
LaurentPolynomial.instBialgebra
{R : Type u_6}
[CommSemiring R]
{A : Type u_7}
[Semiring A]
[Bialgebra R A]
:
Bialgebra R (LaurentPolynomial A)
Equations
@[simp]
theorem
LaurentPolynomial.comul_T
{R : Type u_6}
[CommSemiring R]
{A : Type u_7}
[Semiring A]
[Bialgebra R A]
(n : ℤ)
:
@[simp]
theorem
LaurentPolynomial.counit_T
{R : Type u_6}
[CommSemiring R]
{A : Type u_7}
[Semiring A]
[Bialgebra R A]
(n : ℤ)
: