Tensoring with a flat module is an exact functor #
In this file we prove that tensoring with a flat module is an exact functor.
Main results #
- Module.Flat.iff_lTensor_preserves_shortComplex_exact: an- R-module- Mis flat if and only if for every exact sequence- A ⟶ B ⟶ C,- M ⊗ A ⟶ M ⊗ B ⟶ M ⊗ Cis also exact.
- Module.Flat.iff_rTensor_preserves_shortComplex_exact: an- R-module- Mis flat if and only if for every short exact sequence- A ⟶ B ⟶ C,- A ⊗ M ⟶ B ⊗ M ⟶ C ⊗ Mis also exact.
TODO #
- Prove that tensoring with a flat module is an exact functor in the sense that it preserves both finite limits and colimits.
- Relate flatness with Tor
theorem
Module.Flat.lTensor_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
[Flat R ↑M]
(C : CategoryTheory.ShortComplex (ModuleCat R))
(hC : C.Exact)
 :
theorem
Module.Flat.rTensor_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
[Flat R ↑M]
(C : CategoryTheory.ShortComplex (ModuleCat R))
(hC : C.Exact)
 :
theorem
Module.Flat.iff_lTensor_preserves_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
 :
Flat R ↑M ↔   ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)),
    C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorLeft M)).Exact
theorem
Module.Flat.iff_rTensor_preserves_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
 :
Flat R ↑M ↔   ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)),
    C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorRight M)).Exact