Extension of fractional ideals #
This file defines the extension of a fractional ideal along a ring homomorphism.
Main definition #
FractionalIdeal.extended: LetAandBbe commutative rings with respective localizationsIsLocalization M KandIsLocalization N L. Letf : A →+* Bbe a ring homomorphism withhf : M ≤ Submonoid.comap f N. IfI : FractionalIdeal M K, then the extension ofIalongfisextended L hf I : FractionalIdeal N L.FractionalIdeal.extendedHom: The ring homomorphism version ofFractionalIdeal.extended.FractionalIdeal.extendedHomₐ: ForA ⊆ Ban extension of domains, the ring homomorphism that sends a fractional ideal ofAto a fractional ideal ofB.
Main results #
extended_addsays that extension commutes with addition.extended_mulsays that extension commutes with multiplication.
Tags #
fractional ideal, fractional ideals, extended, extension
def
FractionalIdeal.extended
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
:
FractionalIdeal N L
Given commutative rings A and B with respective localizations IsLocalization M K and
IsLocalization N L, and a ring homomorphism f : A →+* B satisfying M ≤ Submonoid.comap f N, a
fractional ideal I of A can be extended along f to a fractional ideal of B.
Equations
- FractionalIdeal.extended L hf I = ⟨Submodule.span B (⇑(IsLocalization.map L f hf) '' ↑I), ⋯⟩
Instances For
theorem
FractionalIdeal.mem_extended_iff
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
(x : L)
:
@[simp]
theorem
FractionalIdeal.coe_extended_eq_span
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
:
@[simp]
theorem
FractionalIdeal.extended_zero
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
:
@[simp]
theorem
FractionalIdeal.extended_one
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
:
theorem
FractionalIdeal.extended_add
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I J : FractionalIdeal M K)
:
theorem
FractionalIdeal.extended_mul
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I J : FractionalIdeal M K)
:
def
FractionalIdeal.extendedHom
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
:
The ring homomorphism version of FractionalIdeal.extended.
Equations
- FractionalIdeal.extendedHom L hf = { toFun := FractionalIdeal.extended L hf, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
FractionalIdeal.extendedHom_apply
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
:
@[reducible, inline]
abbrev
FractionalIdeal.extendedHomₐ
(A : Type u_1)
(K : Type u_2)
(L : Type u_3)
(B : Type u_4)
[CommRing A]
[CommRing B]
[IsDomain B]
[Algebra A B]
[NoZeroSMulDivisors A B]
[Field K]
[Field L]
[Algebra A K]
[Algebra B L]
[IsFractionRing A K]
[IsFractionRing B L]
:
The ring homomorphisme that extends a fractional ideal of A to a fractional ideal of B for
A ⊆ B an extension of domains.
Equations
- FractionalIdeal.extendedHomₐ A K L B = FractionalIdeal.extendedHom L ⋯