Documentation

Mathlib.RingTheory.Ideal.AssociatedPrime.Basic

Associated primes of a module #

We provide the definition and related lemmas about associated primes of modules.

Main definition #

Main results #

TODO #

Generalize this to a non-commutative setting once there are annihilator for non-commutative rings.

def IsAssociatedPrime {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_2) [AddCommGroup M] [Module R M] :

IsAssociatedPrime I M if the prime ideal I is the annihilator of some x : M.

Equations
Instances For
    def associatedPrimes (R : Type u_1) [CommRing R] (M : Type u_2) [AddCommGroup M] [Module R M] :

    The set of associated primes of a module.

    Equations
    Instances For
      theorem IsAssociatedPrime.isPrime {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] (h : IsAssociatedPrime I M) :
      theorem IsAssociatedPrime.map_of_injective {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (f : M →ₗ[R] M') (h : IsAssociatedPrime I M) (hf : Function.Injective f) :
      theorem LinearEquiv.isAssociatedPrime_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (l : M ≃ₗ[R] M') :
      theorem associatedPrimes.subset_of_injective {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {f : M →ₗ[R] M'} (hf : Function.Injective f) :

      If M → M' is injective, then the set of associated primes of M is contained in that of M'.

      Stacks Tag 02M3 (first part)

      theorem associatedPrimes.subset_union_of_exact {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {f : M →ₗ[R] M'} {M'' : Type u_4} [AddCommGroup M''] [Module R M''] {g : M' →ₗ[R] M''} (hf : Function.Injective f) (hfg : Function.Exact f g) :

      If 0 → M → M' → M'' is an exact sequence, then the set of associated primes of M' is contained in the union of those of M and M''.

      Stacks Tag 02M3 (second part)

      theorem associatedPrimes.prod (R : Type u_1) [CommRing R] (M : Type u_2) [AddCommGroup M] [Module R M] (M' : Type u_3) [AddCommGroup M'] [Module R M'] :

      The set of associated primes of the product of two modules is equal to the union of those of the two modules.

      Stacks Tag 02M3 (third part)

      theorem LinearEquiv.AssociatedPrimes.eq {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (l : M ≃ₗ[R] M') :
      theorem biUnion_associatedPrimes_eq_zero_divisors (R : Type u_1) [CommRing R] (M : Type u_2) [AddCommGroup M] [Module R M] [IsNoetherianRing R] :
      passociatedPrimes R M, p = {r : R | ∃ (x : M), x 0 r x = 0}
      theorem IsAssociatedPrime.eq_radical {R : Type u_1} [CommRing R] {I J : Ideal R} (hI : I.IsPrimary) (h : IsAssociatedPrime J (R I)) :