Documentation

Mathlib.RingTheory.Morita.Matrix

Morita Equivalence between R and Mₙ(R) #

Main definitions #

Main results #

The functor from Mod-R to Mod-Mₙ(R) induced by LinearMap.mapModule and Matrix.matrixModule.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ModuleCat.toMatrixModCat_obj_carrier (R : Type u) (ι : Type v) [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat R) :
    ((toMatrixModCat R ι).obj M) = (ιM)
    @[simp]
    theorem ModuleCat.toMatrixModCat_map (R : Type u) (ι : Type v) [Ring R] [Fintype ι] [DecidableEq ι] {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :
    def MatrixModCat.toModuleCatObj (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (i : ι) :

    The image of Eᵢᵢ (the elementary matrix) acting on all elements in M.

    Equations
    Instances For
      @[simp]
      theorem MatrixModCat.mem_toModuleCatObj {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (i : ι) {x : M} :
      x toModuleCatObj R M i ∃ (y : M), Matrix.single i i 1 y = x
      def MatrixModCat.fromMatrixLinear {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] {N : Type u_2} [AddCommGroup N] [Module (Matrix ι ι R) N] (i : ι) [Module R N] [IsScalarTower R (Matrix ι ι R) N] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (f : M →ₗ[Matrix ι ι R] N) :
      (toModuleCatObj R M i) →ₗ[R] (toModuleCatObj R N i)

      An R-linear map between Eᵢᵢ • M and Eᵢᵢ • N induced by an Mₙ(R)-linear map from M to N.

      Equations
      Instances For
        @[simp]
        theorem MatrixModCat.fromMatrixLinear_apply_coe {R : Type u} {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] {M : Type u_1} [AddCommGroup M] [Module (Matrix ι ι R) M] {N : Type u_2} [AddCommGroup N] [Module (Matrix ι ι R) N] (i : ι) [Module R N] [IsScalarTower R (Matrix ι ι R) N] [Module R M] [IsScalarTower R (Matrix ι ι R) M] (f : M →ₗ[Matrix ι ι R] N) (c : (toModuleCatObj R M i)) :
        ((fromMatrixLinear i f) c) = f c
        theorem MatrixModCat.isScalarTower_toModuleCat (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) :
        IsScalarTower R (Matrix ι ι R) M
        def MatrixModCat.toModuleCat (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) :

        The functor from the category of modules over Mₙ(R) to the category of modules over R induced by sending M to the image of Eᵢᵢ • · where Eᵢᵢ is the elementary matrix.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem MatrixModCat.toModuleCat_obj_isAddCommGroup (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
          @[simp]
          theorem MatrixModCat.toModuleCat_obj_isModule (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
          @[simp]
          theorem MatrixModCat.toModuleCat_obj_carrier (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) (M : ModuleCat (Matrix ι ι R)) :
          ((toModuleCat R i).obj M) = (toModuleCatObj R (↑M) i)
          @[simp]
          theorem MatrixModCat.toModuleCat_map (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) {X✝ Y✝ : ModuleCat (Matrix ι ι R)} (f : X✝ Y✝) :

          The linear equiv induced by the equality toModuleCat (toMatrixModCat M) = Eᵢᵢ • Mⁿ.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def fromModuleCatToModuleCatLinearEquiv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) :
            (MatrixModCat.toModuleCatObj R (ιM) i) ≃ₗ[R] M

            Auxiliary isomorphism showing that compose two functors gives id on objects.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem fromModuleCatToModuleCatLinearEquiv_symm_apply_coe (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) (x : M) (j : ι) :
              @[simp]
              theorem fromModuleCatToModuleCatLinearEquiv_apply (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : Type u_1) [AddCommGroup M] [Module R M] (i : ι) (x : (MatrixModCat.toModuleCatObj R (ιM) i)) :
              (fromModuleCatToModuleCatLinearEquiv R M i) x = i_1 : ι, x i_1

              The natural isomorphism showing that toModuleCat is the left inverse of toMatrixModCat.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def toModuleCatFromModuleCatLinearEquiv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (M : ModuleCat (Matrix ι ι R)) (j : ι) :
                M ≃ₗ[Matrix ι ι R] ι(MatrixModCat.toModuleCatObj R (↑M) j)

                The linear equiv induced by the equality toMatrixModCat (toModuleCat M) = Mⁿ

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The natural isomorphism showing that toMatrixModCat is the right inverse of toModuleCat.

                  Equations
                  Instances For
                    def ModuleCat.matrixEquivalence (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (i : ι) :

                    ModuleCat.toMatrixModCat R ι and MatrixModCat.toModuleCat R i together form an equivalence of categories.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      def moritaEquivalenceMatrix (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] (i : ι) :
                      MoritaEquivalence R₀ R (Matrix ι ι R)

                      Moreover ModuleCat.matrixEquivalence is a MoritaEquivalence.

                      Equations
                      Instances For
                        @[simp]
                        theorem moritaEquivalenceMatrix_eqv (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] (i : ι) :
                        theorem IsMoritaEquivalent.matrix (R : Type u) {ι : Type v} [Ring R] [Fintype ι] [DecidableEq ι] (R₀ : Type u_1) [CommRing R₀] [Algebra R₀ R] [Nonempty ι] :
                        IsMoritaEquivalent R₀ R (Matrix ι ι R)