Documentation

Mathlib.RingTheory.TensorProduct.IsBaseChangePi

Base change commutes with finite products #

In particular, localization of modules commutes with finite products. We also show the binary product versions.

theorem IsBaseChange.prodMap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] {M : Type u_3} {N : Type u_4} {M' : Type u_5} {N' : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [AddCommMonoid M'] [AddCommMonoid N'] [Module R M'] [Module R N'] [Module S M'] [Module S N'] [IsScalarTower R S M'] [IsScalarTower R S N'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (hf : IsBaseChange S f) (hg : IsBaseChange S g) :

Base change commutes with binary products.

theorem IsBaseChange.pi {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] {ι : Type u_3} [Finite ι] {M : ιType u_4} {M' : ιType u_5} [(i : ι) → AddCommMonoid (M i)] [(i : ι) → AddCommMonoid (M' i)] [(i : ι) → Module R (M i)] [(i : ι) → Module R (M' i)] [(i : ι) → Module S (M' i)] [∀ (i : ι), IsScalarTower R S (M' i)] (f : (i : ι) → M i →ₗ[R] M' i) (hf : ∀ (i : ι), IsBaseChange S (f i)) :

Base change commutes with finite products.

instance IsLocalizedModule.prodMap {R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_3} {N : Type u_4} {M' : Type u_5} {N' : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [AddCommMonoid M'] [AddCommMonoid N'] [Module R M'] [Module R N'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') [IsLocalizedModule S f] [IsLocalizedModule S g] :

Localization of modules commutes with binary products.

instance IsLocalizedModule.pi {R : Type u_1} [CommSemiring R] (S : Submonoid R) {ι : Type u_3} [Finite ι] {M : ιType u_4} {M' : ιType u_5} [(i : ι) → AddCommMonoid (M i)] [(i : ι) → AddCommMonoid (M' i)] [(i : ι) → Module R (M i)] [(i : ι) → Module R (M' i)] (f : (i : ι) → M i →ₗ[R] M' i) [∀ (i : ι), IsLocalizedModule S (f i)] :

Localization of modules commutes with finite products.