Documentation

Std.Data.TreeSet.Raw.WF

Well-formedness proofs for raw tree sets #

This file contains well-formedness proofs about Std.Data.TreeSet.Raw.Basic. Most of the lemmas require TransCmp cmp for the comparison function cmp.

theorem Std.TreeSet.Raw.WF.empty {α : Type u} {cmp : ααOrdering} :
theorem Std.TreeSet.Raw.WF.emptyc {α : Type u} {cmp : ααOrdering} :
theorem Std.TreeSet.Raw.WF.erase {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {a : α} (h : t.WF) :
(t.erase a).WF
theorem Std.TreeSet.Raw.WF.insert {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {a : α} (h : t.WF) :
(t.insert a).WF
theorem Std.TreeSet.Raw.WF.containsThenInsert {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {a : α} (h : t.WF) :
theorem Std.TreeSet.Raw.WF.filter {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {f : αBool} (h : t.WF) :
theorem Std.TreeSet.Raw.WF.partition_fst {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {f : αBool} :
theorem Std.TreeSet.Raw.WF.partition_snd {α : Type u} {cmp : ααOrdering} {t : Raw α cmp} [TransCmp cmp] {f : αBool} :
theorem Std.TreeSet.Raw.WF.eraseMany {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {ρ : Type u_1} [ForIn Id ρ α] {l : ρ} {t : Raw α cmp} (h : t.WF) :
theorem Std.TreeSet.Raw.WF.insertMany {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {ρ : Type u_1} [ForIn Id ρ α] {l : ρ} {t : Raw α cmp} (h : t.WF) :
theorem Std.TreeSet.Raw.WF.ofList {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {l : List α} :
(Raw.ofList l cmp).WF
theorem Std.TreeSet.Raw.WF.ofArray {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a : Array α} :
(Raw.ofArray a cmp).WF
theorem Std.TreeSet.Raw.WF.merge {α : Type u} {cmp : ααOrdering} {t₁ t₂ : Raw α cmp} (h : t₁.WF) :
(t₁.merge t₂).WF