Equations
- RelHom.onFun r f = { toFun := f, map_rel' := ⋯ }
Instances For
instance
IsWellFounded.onFun
{α : Type u_1}
{β : Type u_2}
(r : β → β → Prop)
(f : α → β)
[wfl : IsWellFounded β r]
:
IsWellFounded α (Function.onFun r f)
def
MonomialOrder.ofInjective.Syn
{σ : Type u_2}
(m : MonomialOrder σ)
{σ' : Type u_3}
(f : σ' → σ)
:
Type u_3
Equations
- MonomialOrder.ofInjective.Syn m f = (σ' →₀ ℕ)
Instances For
noncomputable instance
MonomialOrder.ofInjective.acm'
{σ' : Type u_1}
{σ : Type u_2}
(m : MonomialOrder σ)
(f : σ' → σ)
:
AddCommMonoid (Syn m f)
Equations
- MonomialOrder.ofInjective.acm' m f = inferInstanceAs (AddCommMonoid (σ' →₀ ℕ))
def
MonomialOrder.ofInjective.toSyn'
{σ : Type u_2}
(m : MonomialOrder σ)
{σ' : Type u_3}
(f : σ' → σ)
:
Equations
- MonomialOrder.ofInjective.toSyn' m f = AddEquiv.refl (σ' →₀ ℕ)
Instances For
noncomputable def
MonomialOrder.ofInjective
{σ : Type u_2}
(m : MonomialOrder σ)
{σ' : Type u_3}
{f : σ' → σ}
(hf : Function.Injective f)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
MonomialOrder.Embedding
{σ' : Type u_1}
(m' : MonomialOrder σ')
{σ : Type u_2}
(m : MonomialOrder σ)
:
Type (max u_1 u_2)
- toFun : σ' → σ
- toFun_injective : Function.Injective self.toFun
Instances For
instance
MonomialOrder.Embedding.instFunLike
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
:
Equations
- MonomialOrder.Embedding.instFunLike = { coe := MonomialOrder.Embedding.toFun, coe_injective' := ⋯ }
theorem
MonomialOrder.Embedding.ext
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
{e₁ e₂ : m'.Embedding m}
(h : ⇑e₁ = ⇑e₂)
:
theorem
MonomialOrder.Embedding.ext_iff
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
{e₁ e₂ : m'.Embedding m}
:
@[simp]
theorem
MonomialOrder.Embedding.toFun_eq_coe
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
:
theorem
MonomialOrder.Embedding.monotone
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
:
theorem
MonomialOrder.Embedding.coe_injective
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
:
def
MonomialOrder.Embedding.toStrictMono
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
:
StrictMono (⇑m.toSyn ∘ Finsupp.mapDomain ⇑e ∘ ⇑m'.toSyn.symm)
Equations
- ⋯ = ⋯
Instances For
noncomputable def
MonomialOrder.Embedding.toOrderEmbedding
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
:
Equations
- e.toOrderEmbedding = OrderEmbedding.ofStrictMono (⇑m.toSyn ∘ Finsupp.mapDomain ⇑e ∘ ⇑m'.toSyn.symm) ⋯
Instances For
def
MonomialOrder.Embedding.le_iff_le
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
(a b : m'.syn)
:
Equations
- ⋯ = ⋯
Instances For
def
MonomialOrder.Embedding.le_iff_le'
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
(a b : σ' →₀ ℕ)
:
Equations
- ⋯ = ⋯
Instances For
def
MonomialOrder.Embedding.lt_iff_lt
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
(a b : m'.syn)
:
Equations
- ⋯ = ⋯
Instances For
def
MonomialOrder.Embedding.lt_iff_lt'
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
(a b : σ' →₀ ℕ)
:
Equations
- ⋯ = ⋯
Instances For
def
MonomialOrder.Embedding.ofInjective
{σ' : Type u_1}
{σ : Type u_2}
(m : MonomialOrder σ)
{f : σ' → σ}
(hf : Function.Injective f)
:
(m.ofInjective hf).Embedding m
Equations
- MonomialOrder.Embedding.ofInjective m hf = { toFun := f, toFun_injective := hf, monotone' := ⋯ }
Instances For
theorem
MonomialOrder.Embedding.ofInjective_coe
{σ' : Type u_1}
{σ : Type u_2}
(m : MonomialOrder σ)
{f : σ' → σ}
(hf : Function.Injective f)
:
theorem
MonomialOrder.Embedding.degree_rename
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
{R : Type u_3}
[CommSemiring R]
(p : MvPolynomial σ' R)
:
@[simp]
theorem
MonomialOrder.Embedding.leadingCoeff_rename
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
{R : Type u_3}
[CommSemiring R]
(p : MvPolynomial σ' R)
:
theorem
MonomialOrder.Embedding.leadingTerm_rename
{σ' : Type u_1}
{m' : MonomialOrder σ'}
{σ : Type u_2}
{m : MonomialOrder σ}
(e : m'.Embedding m)
{R : Type u_3}
[CommSemiring R]
(p : MvPolynomial σ' R)
: