Documentation

Groebner.MonomialOrderEmbedding

def RelHom.onFun {α : Type u_1} {β : Type u_2} (r : ββProp) (f : αβ) :
Equations
Instances For
    @[simp]
    def RelHom.coe_onFun {α : Type u_1} {β : Type u_2} {r : ββProp} (f : αβ) :
    (onFun r f) = f
    Equations
    • =
    Instances For
      instance IsWellFounded.onFun {α : Type u_1} {β : Type u_2} (r : ββProp) (f : αβ) [wfl : IsWellFounded β r] :
      def MonomialOrder.ofInjective.Syn {σ : Type u_2} (m : MonomialOrder σ) {σ' : Type u_3} (f : σ'σ) :
      Type u_3
      Equations
      Instances For
        noncomputable instance MonomialOrder.ofInjective.acm' {σ' : Type u_1} {σ : Type u_2} (m : MonomialOrder σ) (f : σ'σ) :
        Equations
        def MonomialOrder.ofInjective.toSyn' {σ : Type u_2} (m : MonomialOrder σ) {σ' : Type u_3} (f : σ'σ) :
        (σ' →₀ ) ≃+ Syn m f
        Equations
        Instances For
          noncomputable def MonomialOrder.ofInjective {σ : Type u_2} (m : MonomialOrder σ) {σ' : Type u_3} {f : σ'σ} (hf : Function.Injective f) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            structure MonomialOrder.Embedding {σ' : Type u_1} (m' : MonomialOrder σ') {σ : Type u_2} (m : MonomialOrder σ) :
            Type (max u_1 u_2)
            Instances For
              instance MonomialOrder.Embedding.instFunLike {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} :
              FunLike (m'.Embedding m) σ' σ
              Equations
              theorem MonomialOrder.Embedding.ext {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} {e₁ e₂ : m'.Embedding m} (h : e₁ = e₂) :
              e₁ = e₂
              theorem MonomialOrder.Embedding.ext_iff {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} {e₁ e₂ : m'.Embedding m} :
              e₁ = e₂ e₁ = e₂
              @[simp]
              theorem MonomialOrder.Embedding.toFun_eq_coe {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) :
              e.toFun = e
              theorem MonomialOrder.Embedding.monotone {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) :
              theorem MonomialOrder.Embedding.coe_injective {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) :
              def MonomialOrder.Embedding.toStrictMono {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) :
              Equations
              • =
              Instances For
                noncomputable def MonomialOrder.Embedding.toOrderEmbedding {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) :
                m'.syn ↪o m.syn
                Equations
                Instances For
                  def MonomialOrder.Embedding.le_iff_le {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) (a b : m'.syn) :
                  m.toSyn (Finsupp.mapDomain (⇑e) (m'.toSyn.symm a)) m.toSyn (Finsupp.mapDomain (⇑e) (m'.toSyn.symm b)) a b
                  Equations
                  • =
                  Instances For
                    def MonomialOrder.Embedding.le_iff_le' {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) (a b : σ' →₀ ) :
                    m.toSyn (Finsupp.mapDomain (⇑e) a) m.toSyn (Finsupp.mapDomain (⇑e) b) m'.toSyn a m'.toSyn b
                    Equations
                    • =
                    Instances For
                      def MonomialOrder.Embedding.lt_iff_lt {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) (a b : m'.syn) :
                      m.toSyn (Finsupp.mapDomain (⇑e) (m'.toSyn.symm a)) < m.toSyn (Finsupp.mapDomain (⇑e) (m'.toSyn.symm b)) a < b
                      Equations
                      • =
                      Instances For
                        def MonomialOrder.Embedding.lt_iff_lt' {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) (a b : σ' →₀ ) :
                        m.toSyn (Finsupp.mapDomain (⇑e) a) < m.toSyn (Finsupp.mapDomain (⇑e) b) m'.toSyn a < m'.toSyn b
                        Equations
                        • =
                        Instances For
                          def MonomialOrder.Embedding.ofInjective {σ' : Type u_1} {σ : Type u_2} (m : MonomialOrder σ) {f : σ'σ} (hf : Function.Injective f) :
                          Equations
                          Instances For
                            theorem MonomialOrder.Embedding.ofInjective_coe {σ' : Type u_1} {σ : Type u_2} (m : MonomialOrder σ) {f : σ'σ} (hf : Function.Injective f) :
                            (ofInjective m hf) = f
                            theorem MonomialOrder.Embedding.degree_rename {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) {R : Type u_3} [CommSemiring R] (p : MvPolynomial σ' R) :
                            @[simp]
                            theorem MonomialOrder.Embedding.leadingCoeff_rename {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) {R : Type u_3} [CommSemiring R] (p : MvPolynomial σ' R) :
                            theorem MonomialOrder.Embedding.leadingTerm_rename {σ' : Type u_1} {m' : MonomialOrder σ'} {σ : Type u_2} {m : MonomialOrder σ} (e : m'.Embedding m) {R : Type u_3} [CommSemiring R] (p : MvPolynomial σ' R) :