Documentation

Mathlib.Algebra.Order.Module.Archimedean

Archimedean classes for ordered module #

Main definitions #

@[simp]
theorem ArchimedeanClass.mk_smul {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] {K : Type u_2} [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] (a : M) {k : K} (h : k 0) :
mk (k a) = mk a
theorem ArchimedeanClass.mk_le_mk_smul {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] {K : Type u_2} [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] (a : M) (k : K) :
mk a mk (k a)
@[deprecated FiniteArchimedeanClass.submodule (since := "2025-12-14")]

Given an upper set s of archimedean classes in a linearly ordered module M with Archimedean scalars, all elements belonging to these classes form a submodule, except when s = ⊤ for which the set would be empty. For s = ⊤, we assign the junk value .

This has the same carrier as ArchimedeanClass.addSubgroup's.

Equations
Instances For
    @[reducible, inline, deprecated FiniteArchimedeanClass.ball (since := "2025-12-14")]
    noncomputable abbrev ArchimedeanClass.ball {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (K : Type u_2) [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] (c : ArchimedeanClass M) :

    An open ball defined by ArchimedeanClass.submodule of UpperSet.Ioi c. For c = ⊤, we assign the junk value .

    This has the same carrier as ArchimedeanClass.ballAddSubgroup's.

    Equations
    Instances For
      @[reducible, inline, deprecated FiniteArchimedeanClass.closedBall (since := "2025-12-14")]
      noncomputable abbrev ArchimedeanClass.closedBall {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (K : Type u_2) [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] (c : ArchimedeanClass M) :

      A closed ball defined by ArchimedeanClass.submodule of UpperSet.Ici c.

      This has the same carrier as ArchimedeanClass.closedBallAddSubgroup's.

      Equations
      Instances For
        @[simp, deprecated FiniteArchimedeanClass.toAddSubgroup_ball (since := "2025-12-14")]
        @[simp, deprecated FiniteArchimedeanClass.toAddSubgroup_closedBall (since := "2025-12-14")]
        @[simp, deprecated FiniteArchimedeanClass.mem_ball_iff (since := "2025-12-14")]
        theorem ArchimedeanClass.mem_ball_iff {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (K : Type u_2) [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] {a : M} {c : ArchimedeanClass M} (hc : c ) :
        a ball K c c < mk a
        @[simp, deprecated FiniteArchimedeanClass.mem_closedBall_iff (since := "2025-12-14")]
        @[simp, deprecated "Lemma for junk value." (since := "2025-12-14")]
        @[simp, deprecated "Lemma for junk value." (since := "2025-12-14")]
        @[deprecated FiniteArchimedeanClass.ball_strictAnti (since := "2025-12-14")]
        @[deprecated FiniteArchimedeanClass.ball_lt_closedBall (since := "2025-12-14")]

        Given an upper set s of finite archimedean classes in a linearly ordered module M with Archimedean scalars, all elements belonging to these classes together with 0 form a submodule.

        This has the same carrier as FiniteArchimedeanClass.addSubgroup.

        Equations
        Instances For
          @[reducible, inline]

          An open ball defined by ArchimedeanClass.submodule of UpperSet.Ioi c. For c = ⊤, we assign the junk value .

          This has the same carrier as ArchimedeanClass.ballAddSubgroup's.

          Equations
          Instances For
            @[reducible, inline]

            A closed ball defined by ArchimedeanClass.submodule of UpperSet.Ici c.

            This has the same carrier as ArchimedeanClass.closedBallAddSubgroup's.

            Equations
            Instances For
              @[simp]
              theorem FiniteArchimedeanClass.mem_ball_iff {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (K : Type u_2) [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] {a : M} {c : FiniteArchimedeanClass M} :
              a ball K c ∀ (h : a 0), c < mk a h
              @[simp]
              theorem FiniteArchimedeanClass.mem_closedBall_iff {M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (K : Type u_2) [Ring K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] [Module K M] [PosSMulMono K M] {a : M} {c : FiniteArchimedeanClass M} :
              a closedBall K c ∀ (h : a 0), c mk a h