Documentation

Mathlib.AlgebraicGeometry.Morphisms.FiniteType

Morphisms of finite type #

A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.

A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.

We show that these properties are local, and are stable under compositions and base change.

A morphism of schemes f : X ⟶ Y is locally of finite type if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is of finite type.

Instances
    @[deprecated AlgebraicGeometry.Scheme.Hom.finiteType_appLE (since := "2026-01-20")]

    Alias of AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE.


    Alias of AlgebraicGeometry.LocallyOfFiniteType.finiteType_appLE.